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Abstract—Deep learning has recently seen rapid development and received significant attention due to its state-of-the-art

performance on previously-thought hard problems. However, because of the internal complexity and nonlinear structure of deep neural

networks, the underlying decision making processes for why these models are achieving such performance are challenging and

sometimes mystifying to interpret. As deep learning spreads across domains, it is of paramount importance that we equip users of deep

learning with tools for understanding when a model works correctly, when it fails, and ultimately how to improve its performance.

Standardized toolkits for building neural networks have helped democratize deep learning; visual analytics systems have now been

developed to support model explanation, interpretation, debugging, and improvement. We present a survey of the role of visual

analytics in deep learning research, which highlights its short yet impactful history and thoroughly summarizes the state-of-the-art using

a human-centered interrogative framework, focusing on the Five W’s and How (Why, Who, What, How, When, and Where). We

conclude by highlighting research directions and open research problems. This survey helps researchers and practitioners in both

visual analytics and deep learning to quickly learn key aspects of this young and rapidly growing body of research, whose impact spans

a diverse range of domains.

Index Terms—Deep learning, visual analytics, information visualization, neural networks
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1 INTRODUCTION

D EEP learning is a specific set of techniques from the
broader field of machine learning (ML) that focus on

the study and usage of deep artificial neural networks to
learn structured representations of data. First mentioned as
early as the 1940s [1], artificial neural networks have a rich
history [2], and have recently seen a dominate and perva-
sive resurgence [3], [4], [5] in many research domains by
producing state-of-the-art results [6], [7] on a number of
diverse big data tasks [8], [9]. For example, the premiere
machine learning, deep learning, and artificial intelligence
(AI) conferences have seen enormous growth in attendance
and paper submissions since early 2010s. Furthermore,
open-source toolkits and programming libraries for build-
ing, training, and evaluating deep neural networks have
become more robust and easy to use, democratizing deep
learning. As a result, the barrier to developing deep learn-
ing models is lower than ever before and deep learning
applications are becoming pervasive.

While this technological progress is impressive, it
comes with unique and novel challenges. For example,
the lack of interpretability and transparency of neural

networks, from the learned representations to the underly-
ing decision process, is an important problem to address.
Making sense of why a particular model misclassifies test
data instances or behaves poorly at times is a challenging
task for model developers. Similarly, end-users interacting
with an application that relies on deep learning to make
critical decisions may question its reliability if no explana-
tion is given by the model, or become baffled if the expla-
nation is convoluted. While explaining neural network
decisions is important, there are numerous other problems
that arise from deep learning, such as AI safety and secu-
rity (e.g., when using models in applications such as self-
driving vehicles), and compromised trust due to bias in
models and datasets, just to name a few. These challenges
are often compounded, due to the large datasets required
to train most deep learning models. As worrisome as these
problems are, they will likely become even more wide-
spread as more AI-powered systems are deployed in the
world. Therefore, a general sense of model understanding
is not only beneficial, but often required to address the
aforementioned issues.

Data visualization and visual analytics excel at knowledge
communication and insight discovery by using encodings to
transform abstract data into meaningful representations. In
the seminal work by Zeiler and Fergus [10], a technique called
deconvolutional networks enabled projection from a model’s
learned feature space back to the pixel space. Their technique
and results give insight into what types of features deep neu-
ral networks are learning at specific layers, and also serve as a
debugging tool for improving a model. This work is often
credited for popularizing visualization in the machine
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learning and computer vision communities in recent years,
putting a spotlight on it as a powerful tool that helps people
understand and improve deep learning models. However,
visualization research for neural networks started well
before [11], [12], [13]. Over just a handful of years, many dif-
ferent techniques have been introduced to help interpret what
neural networks are learning. Many such techniques generate
static images, such as attentionmaps and heatmaps for image
classification, indicating which parts of an image are most
important to the classification. However, interaction has also
been incorporated into the model understanding process in
visual analytics tools to help people gain insight [14], [15],
[16]. This hybrid research area has grown in both academia
and industry, forming the basis for many new research
papers, academicworkshops, and deployed industry tools.

In this survey, we summarize a large number of deep
learning visualization works using the Five W’s and How
(Why, Who, What, How, When, and Where). Fig. 1 presents
a visual overview of how these interrogative questions
reveal and organize the various facets of deep learning visu-
alization research and their related topics. By framing the
survey in this way, many existing works fit a description as
the following fictional example:

To interpret representations learned by deep models
(why), model developers (who) visualize neuron acti-
vations in convolutional neural networks (what)
using t-SNE embeddings (how) after the training
phase (when) to solve an urban planning problem
(where).

This framing captures the needs, audience, and techni-
ques of deep learning visualization, and positions new
work’s contributions in the context of existing literature.

We conclude by highlighting prominent research direc-
tions and open problems. We hope that this survey acts as a
companion text for researchers and practitioners wishing
to understand how visualization supports deep learning
research and applications.

2 OUR CONTRIBUTIONS & METHOD OF SURVEY

2.1 Our Contributions

C1. We present a comprehensive, timely survey on visual-
ization and visual analytics in deep learning research,
using a human-centered, interrogative framework.
This method enables us to position each work with
respect to its FiveWs and How (Why,Who,What, How,
When, andWhere), and flexibly discuss and highlight
existingworks’ multifaceted contributions.
� Our human-centered approach using the Five W’s

and How—based on howwe familiarize ourselves
with new topics in everyday settings—enables
readers to quickly grasp important facets of this
young and rapidly growing body of research.

� Our interrogative process provides a framework
to describe existing works, as well as a model to
base new work off of.

C2. To highlight and align the cross-cutting impact that
visual analytics has had on deep learning across a

Fig. 1. A visual overview of our interrogative survey, and how each of the six questions, “Why, Who, What, How, When, and Where,” relate to one
another. Each question corresponds to one section of this survey, indicated by the numbered tag, near each question title. Each section lists its major
sections discussed in the survey.

HOHMAN ET AL.: VISUAL ANALYTICS IN DEEP LEARNING: AN INTERROGATIVE SURVEY FOR THE NEXT FRONTIERS 2675



broad range of domains, our survey goes beyond
visualization-focused venues, extending a wide
scope that encompasses most relevant works from
many top venues in artificial intelligence, machine
learning, deep learning, and computer vision. We
highlight how visual analytics has been an integral
component in solving some of AI’s biggest modern
problems, such as neural network interpretability,
trust, and security.

C3. As deep learning, and more generally AI, touches
more aspects of our daily lives,we highlight important
research directions and open problems that we dis-
tilled from the survey. These include improving the
capabilities of visual analytics systems for furthering
interpretability, conducting more effective design
studies for evaluating system usability and utility,
advocating humans’ important roles in AI-powered
systems, and promoting proper and ethical use of AI
applications to benefit society.

2.2 Survey Methodology & Summarization Process

We selected existing works from top computer science jour-
nals and conferences in visualization (e.g., IEEE Transac-
tions on Visualization and Computer Graphics (TVCG)),
visual analytics (e.g., IEEE Conference on Visual Analytics
Science and Technology (VAST)) and deep learning (e.g.,
Conference on Neural Information Processing Systems
(NIPS) and the International Conference on Machine Learn-
ing (ICML)). Since deep learning visualization is relatively
new, much of the relevant work has appeared in workshops
at the previously mentioned venues; therefore, we also
include those works in our survey. Table 1 lists some of the
most prominent publication venues and their acronyms.
We also inspected preprints posted on arXiv (https://arxiv.
org/), an open-access, electronic repository of manuscript
preprints, whose computer science subject has become a
hub for new deep learning research. Finally, aside from the
traditional aforementioned venues, we include non-aca-
demic venues with significant attention such as Distill,
industry lab research blogs, and research blogs of influential
figures. Because of the rapid growth of deep learning
research and the lack of a perfect fit for publishing and dis-
seminating work in this hybrid area, the inclusion of these
non-traditional sources are important to review, as they are
highly influential and impactful to the field.

Visualization takes many forms throughout the deep
learning literature. This survey focuses on visual analytics
for deep learning. We also include related works from the
AI and computer vision communities that contribute novel
static visualizations. So far, the majority of work surrounds
convolutional neural networks (CNNs) and image data;
more recent work has begun to visualize other models,
e.g., recurrent neural networks (RNNs), long short-term
memory units (LSTMs), and generative adversarial net-
works (GANs). For each work, we recorded the following
information if present:

� Metadata (title, authors, venue, and year published)
� General approach and short summary
� Explicit contributions
� Future work

� Design component (e.g., user-centered design meth-
odologies, interviews, evaluation)

� Industry involvement and open-source code
With this information, we used the Five W’s and How

(Why, Who, What, How, When, and Where) to organize
these existing works and the current state-of-the-art of
visualization and visual analytics in deep learning.

2.3 Related Surveys

While there is a larger literature for visualization formachine
learning, including predictive visual analytics [17], [18], [19]
and human-in-the-loop interactive machine learning [20],
[21], to our knowledge there is no comprehensive survey of
visualization and visual analytics for deep learning. Regard-
ing deep neural networks, related surveys include a recent
book chapter that discusses visualization of deep neural net-
works related to the field of computer vision [22], an unpub-
lished essay that proposes a preliminary taxonomy for
visualization techniques [23], and an article that focuses on
describing interactive model analysis, which mentions deep
learning in a few contexts while describing a high-level
framework for general machine learning models [24]. A
recent overview article by Choo and Liu [25] is the closest in
spirit to our survey. Our survey provides wider coverage
andmore detailed analysis of the literature.

Different from all the related articles mentioned above,
our survey provides a comprehensive, human-centered,
and interrogative framework to describe deep learning
visual analytics tools, discusses the new, rapidly growing

TABLE 1
Relevant Visualization and AI Venues, in the Order of:

Journals, Conferences, Workshops, Open Access Journals,
and Preprint Repositories. In Each Category,
Visualization Venues Precede AI Venues.

TVCG IEEE Transactions on Visualization and Computer Graphics

VAST IEEE Conference on Visual Analytics Science and Technology

InfoVis IEEE Information Visualization

VIS IEEE Visualization Conference (VAST+InfoVis+SciVis)

CHI ACM Conference on Human Factors in Computing Systems

NIPS Conference on Neural Information Processing Systems

ICML International Conference on Machine Learning

CVPR Conference on Computer Vision and Pattern Recognition

ICLR International Conference on Learning Representations

VADL IEEE VIS Workshop on Visual Analytics for Deep Learning

HCML CHI Workshop on Human Centered Machine Learning

IDEA KDDWorkshop on Interactive Data Exploration & Analytics

ICMLWorkshop on Visualization for Deep Learning

WHI ICMLWorkshop on Human Interpretability in ML

NIPS Workshop on Interpreting, Explaining and Visualizing

Deep Learning

NIPS Interpretable ML Symposium

FILM NIPS Workshop on Future of Interactive Learning Machines

ACCVWorkshop on Interpretation and Visualization of Deep

Neural Nets

ICANNWorkshop on Machine Learning and Interpretability

Distill Distill: Journal for Supporting Clarity in Machine Learning

arXiv arXiv.org e-Print Archive
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community at large, and presents the major research trajec-
tories synthesized from existing literature.

2.4 Survey Overview & Organization

Section 3 introduces common deep learning terminology.
Fig. 1 shows a visual overview of this survey’s structure
and Table 2 summarizes representative works. Each inter-
rogative question (Why, Who, What, How, When, and
Where) is given its own section for discussion, ordered to
best motivate why visualization and visual analytics in
deep learning is such a rich and exciting area of research.

Why do we want to visualize deep learning?
Why and for what purpose would one want to use
visualization in deep learning?
Who wants to visualize deep learning?
Who are the types of people and users that would use
and stand to benefit from visualizing deep learning?
What can we visualize in deep learning?
What data, features, and relationships are inherent to
deep learning that can be visualized?
How can we visualize deep learning?
How can we visualize the aforementioned data, fea-
tures, and relationships?
When can we visualize deep learning?
When in the deep learning process is visualization
used and best suited?
Where is deep learning visualization being used?
Where has deep learning visualization been used?

Section 10 presents research directions and open prob-
lems that we gathered and distilled from the literature sur-
vey. Section 11 concludes the survey.

3 COMMON TERMINOLOGY

To enhance readability of this survey, and to provide quick
references for readers new to deep learning, we have tabu-
lated a sample of relevant and common deep learning ter-
minology used in this work, shown in Table 3. The reader
may want to refer to Table 3 throughout this survey for tech-
nical terms, meanings, and synonyms used in various con-
texts of discussion. The table serves as an introduction and
summarization of the state-of-the-art. For definitive techni-
cal and mathematical descriptions, we encourage the reader
to refer to excellent texts on deep learning and neural net-
work design, such as the Deep Learning textbook [26].

4 WHY VISUALIZE DEEP LEARNING

4.1 Interpretability & Explainability

The most abundant, and to some, the most important reason
why people want to visualize deep learning is to understand
how deep learning models make decisions and what repre-
sentations they have learned, so we can place trust in a
model [60]. This notion of general model understanding has
been called the interpretability or explainabilitywhen referring
to machine learning models [60], [61], [62]. However, neural
networks particularly suffer from this problem since often-
times real world and high-performance models contain a
large number of parameters (in the millions) and exhibit
extreme internal complexity by usingmany non-linear trans-
formations at different stages during training. Many works

motivate this problem by using phrases such as “opening
and peering through the black-box,” “transparency,” and
“interpretable neural networks,” [13], [56], [63], referring the
internal complexity of neural networks.

4.1.1 Discordant Definitions for Interpretability

Unfortunately, there is no universally formalized and agreed
upon definition for explainability and interpretability in
deep learning, which makes classifying and qualifying
interpretations and explanations troublesome. In Lipton’s
work “The Mythos of Model Interpretability [60],” he sur-
veys interpretability-related literature, and discovers diverse
motivations for why interpretability is important and is occa-
sionally discordant. Despite this ambiguity, he attempts to
refine the notion of interpretability by making a first step
towards providing a comprehensive taxonomy of both the
desiderata and methods in interpretability research. One
important point that Lipton makes is the difference between
interpretability and an explanation; an explanation can show
predictions without elucidating the mechanisms by which
models work [60].

In another work originally presented as a tutorial at the
International Conference on Acoustics, Speech, and Signal
Processing by Montavona et al. [61], the authors propose
exact definitions of both an interpretation and an explana-
tion. First, an interpretation is “the mapping of an abstract
concept (e.g., a predicted class) into a domain that the human
can make sense of.” They then provide some examples of
interpretable domains, such as images (arrays of pixels) and
text (sequences of words), and noninterpretable domains,
such as abstract vector spaces (word embeddings). Second,
an explanation is “the collection of features of the interpret-
able domain, that have contributed for a given example to
produce a decision (e.g., classification or regression).” For
example, an explanation can be a heatmap highlighting
which pixels of the input image most strongly support an
image classification decision, or in natural language process-
ing, explanations can highlight certain phrases of text.

However, both of the previous works are written by
members of the AI community, whereas work by Miller
titled “Explanation in Artificial Intelligence: Insights from
the Social Sciences” [62] postulates that much of the current
research uses only AI researchers’ intuition of what consti-
tutes a “good” explanation. He suggests that if the focus on
explaining decisions or actions to a human observer is the
goal, then if these techniques are to succeed, the explana-
tions they generate should have a structure that humans
accept. Much of Miller’s work highlights vast and valuable
bodies of research in philosophy, psychology, and cognitive
science for how people define, generate, select, evaluate,
and present explanations, and he argues that interpretabil-
ity and explainability research should leverage and build
upon this history [62]. In another essay, Offert [64] argues
that to make interpretability more rigorous, we must first
identify where it is impaired by intuitive considerations.
That is, we have to “consider it precisely in terms of what it
is not.” While multiple works bring different perspectives,
Lipton makes the keen observation that for the field to prog-
ress, the community must critically engage with this prob-
lem formulation issue [60]. Further research will help
solidify the notions of interpretation and explanation.
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TABLE 2
Overview of Representative Works in Visual Analytics for Deep Learning. Each Row is One Work; Works are Sorted

Alphabetically by First Author’s Last Name. Each Column Corresponds to A Section from The Six Interrogative Questions.
A Work’s Relevant Section is Indicated by A Colored Cell.
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4.1.2 Interpretation as Qualitative Support for Model

Evaluation in Various Application Domains

While research into interpretation itself is relatively new, its
impact has already been seen in applied deep learning con-
texts. A number of applied data science and AI projects that
use deep learning models include a section on interpreta-
tion to qualitatively evaluate and support the model’s pre-
dictions and the work’s claims overall. An example of this is
an approach for end-to-end neural machine translation. In
the work by Johnson et al. [65], the authors present a simple
and efficient way to translate between multiple languages
using a single model, taking advantage of multilingual data
to improve neural machine translation for all languages
involved. The authors visualize an embedding of text
sequences, for example, sentences from multiple languages,
to support and hint at a universal interlingua representa-
tion. Another work that visualizes large machine learning
embeddings is by Zahavy et al. [56], where the authors ana-
lyze deep Q-networks (DQN), a popular reinforcement
learning model, to understand and describe the policies
learned by DQNs for three different Atari 2600 video games.
An application for social good by Robinson et al. [49] dem-
onstrates how to apply deep neural networks on satellite
imagery to perform population prediction and disaggre-
gation, jointly answering the questions “where do people
live?” and “how many people live there?”. In general,
they show how their methodology can be an effective tool

for extracting information from inherently unstructured,
remotely-sensed data to provide effective solutions to social
problems.

These are only a few domains where visualization and
deep learning interpretation have been successfully used.
Others include building trust in autonomous driving
vehicles [30], explaining decisions made by medical imaging
models, such as MRIs on brain scans, to provide medical
experts more information for making diagnoses [66], and
using visual analytics to explore automatically-learned fea-
tures from street imagery to gain perspective into identity,
function, demographics, and affluence in urban spaces, which
is useful for urban design and planning [67].

In this survey we will mention interpretation and expla-
nation often, as they are the most common motivations for
deep learning visualization. Later, we will discuss the dif-
ferent visualization techniques and visual analytics systems
that focus on neural network interpretability for embed-
dings [51], text [32], [40], [41], quantifying interpretabil-
ity [28], and many different image-based techniques
stemming from the AI communities [4], [10], [68], [69], [70].

4.2 Debugging & Improving Models

Building machine learning models is an iterative design pro-
cess [71], [72], [73], and developing deep neural networks is
no different. While mathematical foundations have been laid,
deep learning still has many open research questions. For

TABLE 3
Foundational Deep Learning Terminology used in this Paper, Sorted by Importance.

In a Term’s “Meaning” (Last Column), Defined Terms are Italicized.

Technical Term Synonyms Meaning

Neural Network Artificial neural net,
net

Biologically-inspired models that form the basis of deep learning; approximate functions dependent
upon a large and unknown amount of inputs consisting of layers of neurons

Neuron Computational unit, node Building blocks of neural networks, entities that can apply activation functions

Weights Edges The trained and updated parameters in the neural networkmodel that connect neurons to one another

Layer Hidden layer Stacked collection of neurons that attempt to extract features from data; a layer’s input is connected to a
previous layer’s output

Computational
Graph

Dataflow graph Directed graph where nodes represent operations and edges represent data paths; when implementing
neural networkmodels, often times they are represented as these

Activation
Functions

Transform function Functions embedded into each layer of a neural network that enable the network represent complex non-
linear decisions boundaries

Activations Internal representation Given a trained network one can pass in data and recover the activations at any layer of the network to
obtain its current representation inside the network

Convolutional
Neural Network

CNN, convnet Type of neural network composed of convolutional layers that typically assume image data as input;
these layers have depth unlike typical layers that only have width (number of neurons in a layer); they
make use of filters (feature & pattern detectors) to extract spatially invariant representations

Long Short-Term
Memory

LSTM Type of neural network, often used in text analysis, that addresses the vanishing gradient problem by
using memory gates to propagate gradients through the network to learn long-range dependencies

Loss Function Objective function,
cost function, error

Also seen in general ML contexts, defines what success looks like when learning a representation, i.e., a
measure of difference between a neural network’s prediction and ground truth

Embedding Encoding Representation of input data (e.g., images, text, audio, time series) as vectors of numbers in a high-
dimensional space; oftentimes reduced so data points (i.e., their vectors) can be more easily analyzed
(e.g., compute similarity)

Recurrent Neural
Network

RNN Type of neural networkwhere recurrent connections allow the persistence (or “memory”) of previous
inputs in the network’s internal state which are used to influence the network output

Generative
Adversarial
Networks

GAN Method to conduct unsupervised learning by pitting a generative network against a discriminative
network; the first network mimics the probability distribution of a training dataset in order to fool the
discriminative network into judging that the generated data instance belongs to the training set

Epoch Data pass A complete pass through a given dataset; by the end of one epoch, a neural networkwill have seen every
datum within the dataset once
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example, finding the exact combinations of model depth,
layer width, and finely tuned hyperparameters is nontrivial.
In response to this, many visual analytics systems have been
proposed to help model developers build and debug their
models, with the hope of expediting the iterative experimen-
tation process to ultimately improve performance [15], [47],
[52]. Oftentimes this requires monitoring models during the
training phase [42], [58], identifying misclassified instances
and testing a handful of well-known data instances to observe
performance [29], [39], [50], and allowing a system to suggest
potential directions for the model developer to explore [34].
This reason for why we wish to visualize deep learning
ultimately provides better tools to speed up model develop-
ment for engineers and researchers so that they can quickly
identify and fix problems within a model to improve overall
performance.

4.3 Comparing & Selecting Models

While certainly related to model debugging and improve-
ment, model comparison and selection are slightly different
tasks in which visualization can be useful [74], [75], [76].
Oftentimes model comparison describes the notion of choos-
ing a single model among an ensemble of well-performing
models. That is, no debugging needs to be done; all models
have “learned” or have been trained semi-successfully. There-
fore, the act of selecting a single, best-performing model
requires inspectingmodelmetrics and visualizing parts of the
model to pick the one that has the highest accuracy, the lowest
loss, or is the most generalizable, while avoiding pitfalls such
asmemorizing training data or overfitting.

Some systems take a high-level approach and compare
user-defined model metrics, like accuracy and loss, and
aggregate them on interactive charts for performance com-
parison [27]. Other frameworks compare neural networks
trained on different random initializations (an important
step in model design) to discover how they would affect
performance, while also quantifying performance and inter-
pretation [28]. Some approaches compare models on image
generation techniques, such as performing image recon-
struction from the internal representations of each layer of
different networks to compare different network architec-
tures [77]. Similar to comparing model architectures, some
systems solely rely on data visualization representations
and encodings to compare models [43], while others com-
pare different snapshots of a single model as it trains over
time, i.e., comparing a model after n1 epochs and the same
model after n2 epochs of training time [57].

4.4 Teaching Deep Learning Concepts

Apart from AI experts, another important reason why we
may wish to visualize deep learning is to educate non-
expert users about AI. The exact definition of non-experts
varies by source and is discussed further in Section 5.3. An
example that targets the general public is Teachable
Machines [54], a web-based AI experiment that explores
and teaches the foundations of an image classifier. Users
train a three-way image classifier by using their computer’s
webcam to generate the training data. After providing three
different examples of physical objects around the user (e.g.,
holding up a pencil, a coffee mug, and a phone), the system
then performs real-time inference on whichever object is in

view of the webcam, and shows a bar chart with the corre-
sponding classification scores. Since inference is computed
in real-time, the bar charts wiggles and jumps back and
forth as the user removes an object, say the pencil, from the
view and instead holds up the coffee mug. The visualization
used is a simple bar chart, which provides an approachable
introduction into image classification, a modern-day com-
puter vision and AI problem.

Another example for teaching deep learning concepts, the
Deep Visualization Toolbox [55] discussed later in this sur-
vey, also uses a webcam for instant feedback when interact-
ing with a neural network. Taking instantaneous feedback a
step further, some works have used direct manipulation to
engage non-experts in the learning process. TensorFlow Play-
ground [16], a robust, web-based visual analytics tool for
exploring simple neural networks, uses direct manipulation
to reinforce deep learning concepts, and importantly, evokes
the user’s intuition about how neural networks work. Other
non-traditional mediums have been used to teach deep learn-
ing concepts and build an intuition for how neural networks
behave too. Longform, interactive scrollytelling works focus-
ing on particular AI topics that use interactive visualizations
as supporting evidence are gaining popularity. Examples
include “How to Use t-SNE Effectively,” where users can
play with hundreds of small datasets and vary single param-
eters to observe their effect on an embedding [78], and a
similar interactive article titled “VisualizingMNIST” that vis-
ualizes different types of embeddings produced by different
algorithms [45].

5 WHO USES DEEP LEARNING VISUALIZATION

This section describes the groups of people who may stand to
benefit from deep learning visualization and visual analytics.
We loosely organize them into three non-mutually exclusive
groups by their level of deep learning knowledge (most to
least): model developers, model users, and non-experts. Note that
many of the works discussed can benefit multiple groups,
e.g., a model developer may use a tool aimed at non-experts
to reinforce their own intuition for howneural networks learn.

5.1 Model Developers & Builders

The first group of people who use deep learning visualization
are individuals whose job is primarily focused on developing,
experimenting with, and deploying deep neural networks.
These model developers and builders, whether they are
researchers or engineers, have a strong understanding of
deep learning techniques and a well-developed intuition sur-
rounding model building. Their knowledge expedites key
decisions in deep learning workflows, such as identifying the
which types of models perform best on which types of data.
These individuals wield mastery over models, e.g., knowing
how to vary hyperparameters in the right fashion to achieve
better performance. These individuals are typically seasoned
in building large-scalemodels and training them on high-per-
formance machines to solve real-world problems [24]. There-
fore, tooling and research for these users is much more
technically focused, e.g., exposing many hyperparameters for
detailedmodel control.

Of the existing deep learning visual analytics tools pub-
lished, a handful tackle the problem of developing tools for
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model developers, but few have seen widespread adoption.
Arguably the most well-known system is TensorBoard [27]:
Google’s included open-source visualization platform for its
dataflow graph library TensorFlow. TensorBoard includes a
number of built-in components to help model developers
understand, debug, and optimize TensorFlow programs. It
includes real-time plotting of quantitative model metrics
during training, instance-level predictions, and a visualiza-
tion of the computational graph. The computational graph
component was published separately by Wongsuphasawat
et al. [15] and works by applying a series of graph transfor-
mations that enable standard layout techniques to produce
interactive diagrams of TensorFlow models.

Other tools, such as DeepEyes [47], assist in a number of
model building tasks, e.g., identifying stable layers during
the training process, identifying unnecessary layers and
degenerated filters that do not contribute to a model’s deci-
sions, pruning such entities, and identifying patterns unde-
tected by the network, indicating that more filters or layers
may be needed. Another tool, Blocks [29], allows a model
builder to accelerate model convergence and alleviate over-
fitting, through visualizing class-level confusion patterns.
Other research has developed new metrics beyond meas-
ures like loss and accuracy, to help developers inspect and
evaluate networks while training them [58].

Some tools also address the inherent iterative nature of
training neural networks. For example, ML-o-scope [31] uti-
lizes a time-lapse engine to inspect a model’s training
dynamics to better tune hyperparameters, while work by
Chae et al. [34] visualizes classification results during train-
ing and suggests potential directions to improve perfor-
mance in the model building pipeline. Lastly, visual
analytics tools are beginning to be built for expert users
who wish to use models that are more challenging to work
with. For example, DGMTracker [42] is a visual analytics
tool built to help users understand and diagnose the train-
ing process of deep generative models: powerful networks
that perform unsupervised and semi-supervised learning
where the primary focus is to discover the hidden structure
of data without resorting to external labels.

5.2 Model Users

The second group of people who may benefit from deep
learning visualization are model users. These are users who
may have some technical background but are neural net-
work novices. Common tasks include using well-known
neural network architectures for developing domain spe-
cific applications, training smaller-scale models, and down-
loading pre-trained model weights online to use as a
starting point. This group of users also include machine
learning artists who use models to enable and showcase
new forms of artistic expression.

An example visual analytics system for these model
users is ActiVis [39]: a visual analytics system for interpret-
ing the results of neural networks by using a novel visual
representation that unifies instance- and subset-level inspe-
ctions of neuron activations. Model users can flexibly spec-
ify subsets using input features, labels, or any intermediate
outcomes in a machine learning pipeline. ActiVis was built
for engineers and data scientists at Facebook to explore and
interpret deep learning models results and is deployed on

Facebook’s internal system. LSTMVis [52] is a visual analy-
sis tool for recurrent neural networks with a focus on under-
standing hidden state dynamics in sequence modeling. The
tool allows model users to perform hypothesis testing by
selecting an input range to focus on local state changes, then
to match these states changes to similar patterns in a large
dataset, and finally align the results with structural annota-
tions. The LSTMVis work describes three types of users:
architects, those who wish to develop new deep learning
methodologies; trainers, those who wish to apply LSTMs to
a task in which they are domain experts in; and end users,
those who use pretrained models for various tasks. Lastly,
Embedding Projector [51], while not specifically deep learn-
ing exclusive, is a visual analytics tool to support interactive
visualization and interpretation of large-scale embeddings,
which are common outputs from neural network models.
The work presents three important tasks that model users
often perform while using embeddings; these include exp-
loring local neighborhoods, viewing the global geometry to
find clusters, and finding meaningful directions within an
embedding.

5.3 Non-Experts

The third group of people whom visualization could aid
are non-experts in deep learning. These are individuals
who typically have no prior knowledge about deep learn-
ing, and may or may not have a technical background.
Much of the research targeted at this group is for educa-
tional purposes, trying to explain what a neural network is
and how it works at a high-level, sometimes without
revealing deep learning is present. These group also
includes people who simply use AI-powered devices and
consumer applications.

Apart from Teachable Machines [54] and the Deep Visu-
alization Toolbox [55] mentioned in Section 4.4, TensorFlow
Playground [16], a web-based interactive visualization of a
simple dense network, has become a go-to tool for gaining
intuition about how neural networks learn. TensorFlow
Playground uses direct manipulation experimentation
rather than coding, enabling users to quickly build an intui-
tion about neural networks. The system has been used to
teach students about foundational neural network proper-
ties by using “living lessons,” and also makes it straight-
forward to create a dynamic, interactive educational

Fig. 2. ActiVis [39]: A visual analytics system or interpreting neural
network results using a novel visualization that unifies instance- and
subset-level inspections of neuron activations deployed at Facebook.
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experience. Another web-browser based system, Shape-
Shop [38], allows users to explore and understand the rela-
tionship between input data and a network’s learned
representations. ShapeShop uses a feature visualization
technique called class activation maximization to visualize
specific classes of an image classifier. The system allows
users to interactively select classes from a collection of sim-
ple shapes, select a few hyperparameters, train a model,
and view the generated visualizations all in real-time.

Tools built for non-experts, particularly with an educa-
tional focus, are becoming more popular on the web. A
number of web-based JavaScript frameworks for training
neural networks and inference have been developed; how-
ever, ConvNetJS (http://cs.stanford.edu/people/karpathy/
convnetjs/) and TensorFlow.js (https://js.tensorflow.org/)
are the most used and have enabled developers to create
highly interactive explorable explanations for deep learning
models.

6 WHAT TO VISUALIZE IN DEEP LEARNING

This section discusses the technical components of neural
networks that could be visualized. This section is strongly
related to the next section, Section 7 “How,” which describes
how the components of these networks are visualized in
existing work. By first describing what may be visualized
(this section), we can more easily ground our discussion on
how to visualize them (next section).

6.1 Computational Graph & Network Architecture

The first thing that can be visualized in a deep learning
model is the model architecture. This includes the computa-
tional graph that defines how a neural network model would
train, test, save data to disk, and checkpoint after epoch iter-
ations [27]. Also called the dataflow graph [27], this defines
how data flows from operation to operation to successfully
train and use a model. This is different than the neural
network’s edges and weights, discussed next, which are the
parameters to be tweaked during training. The dataflow
graph can be visualized to potentially inform model devel-
opers of the types of computations occurring within their
model, as discussed in Section 7.1.

6.2 Learned Model Parameters

Other components that can be visualized are the learned
parameters in the network during and after training.

6.2.1 Neural Network Edge Weights

Neural network models are built of many, and sometimes
diverse, constructions of layers of computational units [26].
These layers send information throughout the network by
using edges that connect layers to one another, oftentimes in a
linear manner, yet some more recent architectures have
shown that skipping certain layers and combining informa-
tion in unique ways can lead to better performance. Regard-
less, each node has an outgoing edge with an accompanying
weight that sends signal from one neuron in a layer to poten-
tially thousands of neurons in an adjacent layer [16]. These
are the parameters that are tweaked during the backpropaga-
tion phase of training a deepmodel, and could be worthwhile

to visualize for understandingwhat themodel has learned, as
seen in Section 7.1.

6.2.2 Convolutional Filters

Convolutional neural networks are built using a particular
type of layer, aptly called the convolutional layer. These convo-
lutional layers apply filters over the input data, oftentimes
images represented as a two-dimensional matrix of values, to
generate smaller representations of the data to pass to later
layers in the network. These filters, like the previously men-
tioned traditional weights, are then updated throughout the
training process, i.e., learned by the network, to support a
given task. Therefore, visualizing the learned filters could be
useful as an alternate explanation for what a model has
learned [10], [55], as seen in Section 7.6.

6.3 Individual Computational Units

Albeit reductionist, neural networks can be thought as a col-
lection of layers of neurons connected by edge weights.
Above, we discussed that the edges can be visualized, but
the neurons too can be a source of data to investigate.

6.3.1 Activations

When given a trained model, one can perform inference on
the model using a new data instance to obtain the neural
network’s output, e.g., a classification or a specific predicted
value. Throughout the network, the neurons compute activa-
tions using activation functions (e.g., weighted sum) to com-
bine the signal from the previous layer into a new node [26],
[55]. This mapping is one of the characteristics that allows a
neural network to learn. During inference, we can recover the
activations produced at each layer. We can use activations in
multiple ways, e.g., as a collection of individual neurons, spa-
tial positions, or channels [46]. Although these feature repre-
sentations are typically high-dimensional vectors of the input
data at a certain stage within the network [46], it could be
valuable in helping people visualize how input data is trans-
formed into higher-level features, as seen in Section 7.2. Fea-
ture representations may also shed light upon how the
network and its components respond to particular data
instances [55], commonly called instance-level observation;
wewill discuss this in detail in Sections 7.4 and 7.5.

6.3.2 Gradients for Error Measurement

To train a neural network, we commonly use a process
known as backpropagation [26]. Backpropagation, or some-
times called the backpropagation of errors, is a method to
calculate the gradient of a specified loss function. When
used in combination with an optimization algorithm, e.g.,
gradient descent, we can compute the error at the output
layer of a neural network and redistribute the error by
updating the model weights using the computed gradient.
These gradients flow over the same edges defined in the
network that contain the weights, but flow in the opposite
direction., e.g., from the output layer to the input layer.
Therefore, it could be useful to visualize the gradients of a
network to see how much error is produced at certain out-
puts and where it is distributed [33], [35], as mentioned in
Section 7.6.
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6.4 Neurons in High-Dimensional Space

Continuing the discussion of visualizing activations of a
data instance, we can think of the feature vectors recovered
as vectors in a high-dimensional space. Each neuron in a
layer then becomes a “dimension.” This shift in perspective
is powerful, since we can now take advantage of high-
dimensional visualization techniques to visualize extracted
activations [48], [79]. Sometimes, people use neural net-
works simply as feature vector generators, and defer the
actual task to other computational techniques, e.g., tradi-
tional machine learning models [4], [49]. In this perspective,
we now can think of deep neural networks as feature gener-
ators, whose output embeddings could be worth exploring.
A common technique is to use dimensionality reduction to
take the space spanned by the activations and embed it into
2D or 3D for visualization purposes [48], [51], [79], as dis-
cussed in Section 7.2.

6.5 Aggregated Information

6.5.1 Groups of Instances

As mentioned earlier, instance-level activations allow one to
recover the mapping from data input to a feature vector out-
put. While this can be done for a single data instance, it can
also be done on collections of instances. While at first this
does not seem like a major differentiation from before,
instance groups provide some unique advantages [39], [43].
For example, since instance groups by definition are com-
posed of many instances, one can compute all the activations
simultaneously. Using visualization, we can now compare
these individual activations to see how similar or different
they are from one another. Taking this further, with instance
groups, we can now take multiple groups, potentially from
differing classes, and compare how the distribution of activa-
tions from one group compares or differs from another. This
aggregation of known instances into higher-level groups
could be useful for uncovering the learned decision bound-
ary in classification tasks, as seen in Sections 7.2 and 7.4.

6.5.2 Model Metrics

While instance- and group-level activations could be useful
for investigating how neural networks respond to particular
results a-priori, they suffer from scalability issues, since deep
learning models typically wrangle large datasets. An alterna-
tive object to visualize aremodelmetrics, including loss, accu-
racy, and other measures of error [27]. These summary
statistics are typically computed every epoch and represented
as a time series over the course of a model’s training phase.
Representing the state of amodel through a single number, or
handful of numbers, abstracts away much of the subtle and
interesting features of deep neural networks; however, these
metrics are key indicators for communicating how the net-
work is progressing during the training phase [47]. For exam-
ple, is the network “learning” anything at all or is it learning
“toomuch” and is simplymemorizing data causing it to over-
fit? Not only do these metrics describe notions of a single
model’s performance over time, but in the case of model com-
parison, these metrics become more important, as they can
provide a quick and easy way to compare multiple models at
once. For this reason, visualizing model metrics can be an
important and powerful tool to consider for visual analytics,
as discussed in Section 7.3.

7 HOW TO VISUALIZE DEEP LEARNING

In the previous section, we described what technical compo-
nents of neural networks could be visualized. In this section,
we summarize how the components are visualized and inter-
acted with in existing literature. For most neural network
components, they are often visualized using a few common
approaches. For example, network architectures are often
represented as node-link diagrams; embeddings of many
activations are typically represented as scatter plots; and
model metrics over epoch time are almost always repre-
sented as line charts. In this section, we will also discuss
other representations, going beyond the typical approaches.

7.1 Node-Link Diagrams for Network Architectures

Given a neural network’s dataflow graph or model architec-
ture, the most common way to visualize where data flows
and the magnitude of edge weights is a node-link diagram.
Neurons are shown as nodes, and edge weights as links.
For computational and dataflow graphs, Kahng et al. [39]
describe two methods for creating node-link diagrams. The
first represents only operations as nodes, while the second
represents both operations and data as nodes. The first way
is becoming the standard due to the popularity of Tensor-
Board [27] and the inclusion of its interactive dataflow
graph visualization [15]. However, displaying large num-
bers of links from complex models can generate “hairball”
visualizations where many edge crossings impede pattern
discovery. To address this problem, Wongsuphasawat
et al. [15] extracts high-degree nodes (responsible for many
of the edge crossings), visualizes them separately from the
main graph, and allow users to define super-groups within
the code. Another approach to reduce clutter is to place
more information on each node; DGMTracker [42] provides
a quick snapshot of the dataflow in and out of a node by
visualizing its activations within each node.

Regarding neural network architecture, many visual ana-
lytics systems use node-link diagrams (neurons as nodes,
weights as links) [13], [14], [16], [35], [37]. The weight mag-
nitude and sign can then be encoded using color or link
thickness. This technique was one of the the first to be pro-
posed [13], and the trend has continued on in literature.
Building on this technique, Harley [37] visualizes the convo-
lution windows on each layer and how the activations prop-
agate through the network to make the final classification.
Similar to the dataflow graph examples above, some works
include richer information inside each node besides an acti-
vation value, such as showing a list of images that highly

Fig. 3. Each point is a data instance’s high-dimensional activations at a
particular layer inside of a neural network, dimensionally reduced, and
plotted in 2D. Notice as the data flows through the network the activation
patterns become more discernible (left to right) [39].
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activate that neuron or the activations at a neuron as a
matrix [14]. As mentioned in the dataflow graph visualiza-
tions, node-link diagrams for network architecture work
well for smaller networks [16], but they also suffer from sca-
labilty issues. CNNVis [14], a visual analytics system that
visualizes convolutional neural networks, proposes to use a
bi-clustering-based edge bundling technique to reduce
visual clutter caused by too many links.

7.2 Dimensionality Reduction & Scatter Plots

In Section 6, “What,” we discussed different types of high-
dimensional embeddings: text can be represented as vectors
in word embeddings for natural language processing and
images can be represented as feature vectors inside of a neu-
ral network. Both of these types of embeddings are mathe-
matically represented as large tensors, or sometimes as 2D
matrices, where each row may correspond to an instance
and each column a feature.

The most common technique to visualize these embed-
dings is performing dimensionality reduction to reduce the
number of columns (e.g., features) to two or three. Projec-
ting onto two dimensions would mean computing ðx; yÞ
coordinates for every data instance; for three dimensions,
we compute an additional z component, resulting in
ðx; y; zÞ. In the 2D case, we can plot all data instances as
points in a scatter plot where the axes may or may not have
interpretable meaning, depending on the reduction tech-
nique used, e.g., principal component analysis (PCA) or
t-distributed stochastic neighbor embedding (t-SNE) [79]. In
the 3D case, we can still plot each data instance as a point in
3D space and use interactions to pan, rotate, and navigate
this space [51]. These types of embeddings are often
included in visual analytics systems as one of the main
views [35], [47], and are also used in application papers as
static Figures [56], [65]. However, viewing a 3D space on a
2D medium (e.g., computer screen) may not be ideal for
tasks like comparing exact distances.

Since each reduced point corresponds to an original data
instance, another common approach is to retrieve the origi-
nal image and place it at the reduced coordinate location.
Although the image size must be greatly reduced to prevent
excessive overlap, viewing all the images at once can pro-
vide insight into what a deep learning model has learned,
as seen in the example in [77] where the authors visualize
ImageNet test data, or in [80] where the authors create
many synthetic images from a single class and compare the
variance across many random initial starting seeds for the
generation algorithm. We have discussed the typical case
where each dot in the scatter plot is a data instance, but
some work has also visualized neurons in a layer as sepa-
rate data instances [58]. Another work studies closely how
data instances are transformed as their information is
passed through the deep network, which in effect visualizes
how the neural network separates various classes along
approximated decision boundaries [48]. It is also possible to
use time-dependent data and visualize how an embedding
changes over time, or in the case of deep learning, over
epochs [81]. This can be useful for evaluating the quality of
the embedding during the training phase.

However, these scatter plots raise problems too. The
quality of the embeddings greatly depends on the algorithm

used to perform the reduction. Some works have studied
how PCA and t-SNE differ, mathematical and visually, and
suggest new reduction techniques to capture the semantic
and syntactic qualities within word embeddings [82]. It has
also been shown that popular reduction techniques like t-
SNE are sensitive to changes in the hyperparameter space.
Wattenberg meticulously explores the hyperparameter
space for t-SNE, and offers lessons learned and practical
advice for those who wish to use dimensionality reduction
methods [78]. While these techniques are commonplace,
there are still iterative improvements that can be done using
clever interaction design, such as finding instances similar
to a target instance, i.e., those “near” the target in the pro-
jected space, helping people build intuition for how data is
spatially arranged [51].

7.3 Line Charts for Temporal Metrics

Model developers track the progression of their deep learn-
ing models by monitoring and observing a number of differ-
ent metrics computed after each epoch, including the loss,
accuracy, and different measure of errors. This can be useful
for diagnosing the long training process of deep learning
models., The most common visualization technique for
visualizing this data is by considering the metrics as time
series and plotting them in line charts [27]. This approach is
widely used in deep learning visual analytics tools [35],
[47]. After each epoch, a new entry in the time series is com-
puted, therefore some tools, like TensorBoard, run along-
side models as they train and update with the latest
status [27]. TensorBoard focuses much of its screen real-
estate to these types of charts and supports interactions for
plotting multiple metrics in small multiples, plotting multi-
ple models on top of one another, filtering different models,
providing tooltips for the exact metric values, and resizing
charts for closer inspection. This technique appears in many
visual analytics systems and has become a staple for model
training, comparison, and selection.

7.4 Instance-Based Analysis & Exploration

Another technique to help interpret and debug deep learn-
ing models is testing specific data instances to understand
how they progress throughout a model. Many experts have
built up their own collection of data instances over time,
having developed deep knowledge about their expected
behaviors in models while also knowing their ground truth
labels [19], [39]. For example, an instance consisting of a sin-
gle image or a single text phrase is much easier to under-
stand than an entire image dataset or word embedding
consisting of thousands of numerical features extracted
from an end user’s data. This is called instance-level obser-
vation, where intensive analysis and scrutiny is placed on a
single data instance’s transformation process throughout
the network, and ultimately its final output.

7.4.1 Identifying & Analyzing Misclassified Instances

One application of instance-level analysis is using instances
as unit tests for deep learning models. In the best case sce-
nario, all the familiar instances are classified or predicted
correctly; however, it is important to understand when a
specific instance can fail and how it fails. For example, in the
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task of predicting population from satellite imagery, the
authors showcase three maps of areas with high errors by
using a translucent heatmap overlaid on the satellite imag-
ery [49]. Inspecting these instances reveals three geographic
areas that contain high amounts of man-made features and
signs of activity but have no registered people living in
them: an army base, a national lab, and Walt Disney World.
The visualization helps demonstrate that the proposed
model is indeed learning high-level features about the input
data. Another technique, HOGgles [83], uses an algorithm
to visualize feature spaces by using object detectors while
inverting visual features back to natural images. The
authors find that when visualizing the features of misclassi-
fied images, although the classification is wrong in the
image space, they look deceptively similar to the true posi-
tives in the feature space. Therefore, by visualizing feature
spaces of misclassified instances, we can gain a more intui-
tive understanding of recognition systems.

For textual data, a popular technique for analyzing par-
ticular data instances is to use color as the primary encod-
ing. For example, the background of particular characters in
a phrase of words in a sentence would be colored using a
divergent color scheme according to some criteria, often
their activation magnitudes [32], [36], [40]. This helps iden-
tify particular data instances that may warrant deeper
inspection (e.g., those misclassified) [19].

When pre-defined data instances are not unavailable (e.g.,
when analyzing a new dataset), how can we guide users
towards important and interesting instances? To address this
problem, a visual analytics system called Blocks [29] uses
confusion matrices, a technique for summarizing the perfor-
mance of a classification algorithm, and matrix-level sorting
interactions to reveal that class error often occurs in hierar-
chies. Blocks incorporates these techniques with a sample
viewer in the user interface to show selected samples poten-
tiallyworth exploring.

7.4.2 Analyzing Groups of Instances

Instead of using individual data instances for testing and
debugging a model, it is also common for experts to perform
similar similar tasks using groups of instances [19]. While
some detail may be lost when performing group-level analy-
sis it allows experts to further test the model by evaluating its
average and aggregate performance across different groups.

Much of the work using this technique is done on text
data using LSTM models [52]. Some approaches compute
the saliency for groups of words across the model and visu-
alize the values as a matrix [41], while others use matrix vis-
ualizations to show the activations of word groups when
represented as feature vectors in word embeddings [50],
[84]. One system, ActiVis [39], places instance group analy-
sis at the focus of its interactive interface, allowing users to
compare preset and user-defined groups of activations. Sim-
ilar to the matrix visualization that summarizes activations
for each class in CNNVis [14], ActiVis also uses a scrolling
matrix visualization to unify both instance-level and group-
level analysis into a single view where users can compare
the activations of the user-defined instances.

However, sometimes it can be challenging to define
groups for images or text. For textual data, people often use

words to group documents and provide aggregated data.
ConceptVector [85] addresses the instance group generation
problem by providing an interactive interface to create
interesting groups of concepts for model testing. Further-
more, this system also suggests additional words to include
in the user-defined groups, helping guide the user to create
semantically sound concepts.

7.5 Interactive Experimentation

Interactive experimentation, another interesting area that
integrates deep learning visualization, makes heavy use of
interactions for users to experiment with models [86]. By
using direct manipulation for testing models, a user can
pose “what if?” questions and observe how the input data
affects the results. Called explorable explanations [87], this
type of visual experimentation is popular for making sense
of complex concepts and systems.

7.5.1 Models Responding to User-Provided Input Data

To engage the user with the desired concepts to be taught,
many systems require the user to provide some kind of
input data into the system to obtain results. Some visual
analytics systems use a webcam to capture live videos, and
visualize how the internals of neural network models
respond to these dynamic inputs [55]. Another example is a
3D visualization of a CNN trained on the classic MNIST
dataset1 that shows the convolution windows and activa-
tions on images that the user draws by hand [37]. For exam-
ple, drawing a “5” in the designated area passes that
example throughout the network and populates the visuali-
zation with the corresponding activations using a node-link
diagram. A final example using image data is Shape-
Shop [38], a system that allows a user to select data from a
bank of simple shapes to be classified. The system then
trains a neural network and using the class activation maxi-
mization technique to generate visualizations of the learned
features of the model. This can be done in real-time, there-
fore a user can quickly train multiple models with different
shapes to observe the effect of adding more diverse data to
improve the internal model representation.

An example using textual data is the online, interactive
Distill article for handwriting prediction [32], which allows
a user to write words on screen, and in real-time, the system
draws multiple to-be-drawn curves predicting what the
user’s next stroke would be, while also visualizing the mod-
el’s activations. Another system uses GANs to interactively
generate images based off of user’s sketches [59]. By sketch-
ing a few colored lines, the system presents the user with
multiple synthetic images using the sketch as a guideline
for what to generate. A final example is the Adversarial
Playground [44], a visual analytics system that enables users
to compare adversarially-perturbed images, to help users
understand why an adversarial example can fool a CNN
image classifier. The user can select from one of the MNIST
digits and adjust the strength of adversarial attack. The sys-
tem then compares the classifications scores in a bar chart to

1. MNIST is a small, popular dataset consisting of thousands of
28 � 28px images of handwritten digits (0 to 9). MNIST is commonly
used as a benchmark for image classification models.
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observe how simple perturbations can greatly impact classi-
fication accuracy.

7.5.2 How Hyperparameters Affect Results

While deep learning models automatically adjust their inter-
nal parameters, their hyperparameters still require fine-tun-
ing. These hyperparameters can have major impact on model
performance and robustness. Some visual analytics systems
expose model hyperparameters to the user for interactive
experimentation. One example previously mentioned is Ten-
sorFlow Playground [16], where users can use direct manipu-
lation to adjust the architecture of a simple, fully-connected
neural network, as well as the hyperparameters associated
with its training, such as the learning rate, activation function,
and regularization. Another example is a Distill article that
meticulously explores the hyperparaemters of the t-SNE
dimensionality reduction method [78]. This article tests doz-
ens of synthetic datasets in different arrangements, while
varying hyperparameters such as the t-SNE perplexity and
the number of iterations to run the algorithm for.

7.6 Algorithms for Attribution & Feature
Visualization

The final method for how to visualize deep learning hails
from the AI and computer vision communities. These are
algorithmic techniques that entail image generation. Given
a trained a model, one can select a single image instance
and use one of the algorithmic techniques to generate a new
image of the same size that either highlights important
regions of the image (often called attribution) or is an
entirely new image that supposedly is representative of the
same class (often called feature visualization) [46], [88]. In
these works, it is common to see large, full-page figures con-
sisting of hundreds of such images corresponding to multi-
ple images classes [89]. However, it is uncommon to see
interactivity in these works, as the primary contribution is
often about algorithms, not interactive techniques or sys-
tems. Since the focus of this interrogative survey is on visual
analytics in deep learning, we do not discuss in detail the
various types of algorithmic techniques. Rather, we mention
the most prominent techniques developed, since they are
impactful to the growing field of deep learning visualization
and could be incorporated into visual analytics systems in
the future. For more details about these techniques, such as

input modification, deconvolutional methods [10], and
input reconstruction methods, we refer our readers to the
taxonomies [90] and literature surveys for visualizing
learned features in CNNs [22], [91], and a tutorial that
presents the theory behind many of these interpretation
techniques and discusses tricks and recommendations to
efficiently use them on real data [61].

7.6.1 Heatmaps for Attribution, Attention, & Saliency

One research area generates translucent heatmaps that over-
lay images to highlight important regions that contribute
towards classification and their sensitivity [4], [69], [92],
[93], [94]. One technique called visual backpropagation
attempts to visualize which parts of an image have contrib-
uted to the classification, and can do so in real-time in a
model debugging tool for self-driving vehicles [30]. Another
technique is to invert representations, i.e., attempt to recon-
struct an image using a feature vector to understand the
what a CNN has learned [77], [95], [96]. Prediction differ-
ence analysis is a method that highlights features in an
image to provide evidence for or against a certain class[66].
Other work hearkens back to more traditional computer
vision techniques by exploring how object detectors emerge
in CNNs and attempts to give humans object detector vision
capabilities to better align humans and deep learning vision
for images [83], [97]. Visualizing CNN filters is also popular,
and has famously shown to generate dream-like images,
becoming popular in artistic tasks [98], [99]. Some work for
interpreting visual question answering (VQA) models and
tasks use these heatmaps to explain which parts of an image
a VQA model is looking at in unison with text activation
maps when answering the given textual questions [36].
However, recent work has shown that some of these meth-
ods fail to provide correct results and argue that we should
develop explanation methods that work on simpler models
before extending them to the more complex ones [91].

7.6.2 Feature Visualization

For feature visualization, while some techniques have
proven interesting [100], one of the most studied techni-
ques, class activation maximization, maximizes the activa-
tion of a chosen, specific neuron using an optimization
scheme, such as gradient ascent, and generates synthetic
images that are representative of what the model has
learned about the chosen class [68]. This led to a number of
works improving the quality of the generated images. Some
studies generated hundreds of these non-deterministic syn-
thetic images and clustered them to see how variations in
the class activation maximization algorithm affects the out-
put image [80]. In some of their most recent work on this
topic, Ngyuen et al. [70] present hundreds of high-quality
images using a deep generator network to improve upon
the state-of-the-art, and include figures comparing their
technique to many of the existing and previous attempts to
improve the quality of generated images. The techniques
developed in this research area have improved dramatically
over the past few years, where now it is possibly to syntheti-
cally generate photorealistic images [101]. A recent compari-
son of feature visualization techniques highlights their
usefulness [88]; however, the authors note that they remain
skeptical of their trustworthiness, e.g., do neurons have a

Fig. 4. TensorFlow Playground [16]: A web-based visual analytics tool
for exploring simple neural networks that uses direct manipulation rather
than programming to teach deep learning concepts and develop an intui-
tion about how neural networks behave.
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consistent meaning across different inputs, and if so, is that
meaning accurately reified by feature visualization [46]?

8 WHEN TO VISUALIZE IN THE DEEP LEARNING
PROCESS

This section describes when visualizing deep learning may
be most relevant and useful. Our discussion primarily cen-
ters around the training process: an iterative, foundational
procedure for using deep learning models. We identify two
distinct, non-mutually exclusive times for when to visual-
ize: during training and after training. Some works propose
that visualization be used both during and after training.

8.1 During Training

Artificial neural networks learn higher-level features that
are useful for class discrimination as training progress [102].
By using visualization during the training process, there is
potential to monitor one’s model as it learns to closely
observe and track the model’s performance [48].

Many of the systems in this category run in a separate
web-browser alongside the training process, and interface
with the underlying model to query the latest model sta-
tus. This way, users can visually explore and rigorously
monitor their models in real time, while they are trained
elsewhere. The visualization systems dynamically update
the charts with metrics recomputed after every epoch,
e.g., the loss, accuracy, and training time. Such metrics
are important to model developers because they rely on
them to determine if a model (1) has begun to learn any-
thing at all; (2) is converging and reaching the peak of its
performance; or (3) has potentially overfitted and memo-
rized the training data. Therefore, many of the visual ana-
lytics systems used during training support and show
these updating visualizations as a primary view in the
interface [16], [27], [34], [35], [42], [47]. One system, Deep
View [58], visualizes model metrics during the training
process and uses its own defined metrics for monitoring
(rather than the loss): a discriminability metric, which
evaluates neuron evolution, and a density metric which
evaluates the output feature maps. This way, for detect-
ing overfitting, the user does not need to wait long to
view to infer overfitting; they simply observe the neuron
density early in training phase.

Similarly, some systems help reduce development time
and save computational resources by visualizing metrics that
indicate whether a model is successfully learning or not,
allowing a user to stop the training process early [16]. By
using visualization during model training, users can save
development time through model steering [35] and utilizing
suggestions for model improvement [34]. Lastly, another
model development time minimization focuses on diagnos-
ing neurons and layers that are not training correctly or are
misclassifying data instances. Examples include Deep-
Eyes [47], a system that identifies stable and unstable layers
and neurons so users may prune their models to speed up
training; Blocks [29], a system that visualizes class confusion
and reveals that confusion patterns follow a hierarchical
structure over the classes which can then be exploited to
design hierarchy-aware architectures; and DGMTracker [42],
a system that proposes a credit assignment algorithm that

indicates how other neurons contribute to the output of par-
ticular failing neurons.

8.2 After Training

While some works support neural network design during
the iterative model building process, there are other works
that focus their visualization efforts after a model has been
trained. In other words, these works assume a trained
model as input to the system or visualization technique.
Note that many, if not most, of the previously mentioned
algorithmic techniques developed in the AI fields, such as
attribution and feature visualization, are performed after
training. These techniques are discussed more in Section 7.6.

The Embedding Projector [51] specializes in visualizing
2D and 3D embeddings produced by trained neural net-
works. While users can visualize typical high-dimensional
datasets in this tool, the Embedding Projector tailors the
experience towards embeddings commonly used deep
learning. Once a neural network model has been trained,
one can compute the activations for a given test dataset and
visualize the activations in the Embedding Projector to visu-
alize and explore the space that the network has learned.
Instead of generating an overview embedding, another pre-
viously discussed system, the Deep Visualization Tool-
box [55], uses a trained model to visualize live activations in
a large small-multiples view to understand of what types of
filters a convolutional network has learned.

More traditional visual analytics systems have also been
developed to inspect a model after it has finished training.
ActiVis [39], a visual analytics system for neural network
interpretation deployed at Facebook reports that Facebook
engineers and data scientists use visual analytics systems
often in their normalworkflow.Another system, RNNVis [43],
visualizes and compares different RNN models for various
natural language processing tasks. This systempositions itself
as a natural extension of TensorFlow; using multiple Tensor-
Flow models as input, the system then analyzes the trained
models to extract learned representations in hidden states,
and further processes the evaluation results for visualization.
Lastly, the LSTMVis [52] system, a visual analysis tool for
RNN interpretability, separates model training from the visu-
alization. This system takes a model as input that must be
trained separately, and from the model, gathers the required
information to produce the interactive visualizations to be
rendered in aweb-based front-end.

9 WHERE IS DEEP LEARNING VISUALIZATION

For the last question of the interrogative survey, we divide
up “Where” into two sections: where deep learning visuali-
zation research has been applied, and where deep learning
visualization research has been conducted, describing the
new and hybrid community. This division provides a con-
cise summary for practitioners who wish to investigate the
usage of the described techniques for their own work, and
provides new researchers with the main venues for this
research area to investigate existing literature.

9.1 Application Domains & Models

While many non-neural approaches are used for real-world
applications, deep learning has successfully achieved state-
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of-the-art performance in several domains. Previously in
Section 4.1.2, we presented works that apply neural net-
works to particular domains and use visualizations to lend
qualitative support to their usual quantitative results to
strengthen users’ trust in their models. These domains
included neural machine translation [65], reinforcement
learning [56], social good [49], autonomous vehicles [30],
medical imaging diagnostics [66], and urban planning [67].

Next we summarize the types of models that have been
used in deep learning visualization. Much of the existing
work has used image-based data and models, namely CNNs,
to generate attribution and feature visualization explanations
for what a model has learned from an image dataset. CNNs,
while not exclusively used for images, have become popular
in the computer vision community and are often used for
image classification and interactive, image-based creative
tasks [59], [103]. Besides images, sequential data (e.g., text,
time series data, and music) has also been studied. This
research stems from the natural language processing commu-
nity, where researchers typically favor RNNs for learning rep-
resentations of large text corpora. These researchers make
sense of large word embeddings by using interactive tools
that support dimensionality reduction techniques to solve
problems such as sequence-to-sequence conversion, transla-
tion, and audio recognition. Research combining both image
and text data has also been done, such as image captioning
and visual question answering [104], [105]. Harder still are
new types of networks called generative adversarial networks, or
GANs for short, that have produced remarkable results for
data generation [106], e.g., producing real-looking yet fake
images [107]. While GANs have only existed for a couple of
years, they are now receiving significant research attention.
To make sense of the learned features and distributions from
GANs, two visual analytics systems, DGMTracker [42] and
GANViz [53], focus on understanding the training dynamics
of GANs to help model developers better train these complex
models, often consisting ofmultiple dueling neural networks.

9.2 A Vibrant Research Community: Hybrid, Apace,
& Open-Sourced

As seen from this survey, bringing together the visualization
communities with the AI communities has led to the design
and development of numerous tools and techniques for
improving deep learning interpretability and democratiza-
tion. This hybrid research area has seen accelerated attention
and interest due to its widespread impact, as evidenced by
the large number of works published in just a few years, as
seen in Table 2. A consequence of this rapid progress is that
deep learning visualization research are being disseminated
across multiple related venues. In academia, the premiere
venues for deep learning visualization research consists of
two main groups: the information visualization and visual
analytics communities; and the artificial intelligence and deep
learning communities. Furthermore, since this area is rela-
tively new, it has seen more attention at multiple workshops
at the previously mentioned academic conferences, as tabu-
lated in Table 1.

Another consequence of this rapidly developing area is
that new work is immediately publicized and open-sourced,
without waiting for it to be “officially” published at conferen-
ces, journals, etc. Many of these releases take the form of a

preprint publication posted on arXiv, where a deep learning
presence has thrived. Not only is it common for academic
research labs and individuals to publish work on arXiv, but
companies from industry are also publishing results, code,
and tools. For example, the most popular libraries2 for imple-
menting neural networks are open-source and have consis-
tent contributions for improving all areas of the codebase,
e.g., installation, computation, and deployment into specific
programming languages’ open-source environments.

Some works have a corresponding blog post on an indus-
try research blog3, which, while non-traditional, has large
impact due to their prominent visibility and large reader-
ship. While posting preprints may have its downsides (e.g.,
little quality control) the communities have been promoting
the good practices of open-sourcing developed code and
including direct links within the preprints; both practices
are now the norm. Although it may be overwhelming to
digest the amount of new research published daily, having
access to the work with its code could encourage reproduc-
ibility and allow the communities to progress faster. In sum-
mary, given the increasing interest in deep learning
visualization research and its importance, we believe our
communities will continue to thrive, and will positively
impact many domains for years to come.

10 RESEARCH DIRECTIONS & OPEN PROBLEMS

Now we present research directions and open problems for
future research distilled from the surveyed works.

10.1 Furthering Interpretability

Unsurprisingly, with the amount of attention and importance
on interpretability and explainability in the deep learning
visualization literature, the first area for future work is con-
tinuing to create new interpretablemethods for deep learning
models. For the information visualization and visual analytics
communities, this could constitute creating new visual repre-
sentations for the components in deep learning models, or
developing new interaction techniques to reveal deeper
insights about one’s model. For the AI communities, more
insightful attribution and feature visualization techniques for
trained models that are fast (computationally cheap) could be
incorporated into visualization systems. Combining visual
representations, helpful interactions, and state-of-the-art attri-
bution and feature visualization techniques together into rich
user interfaces could lead to major breakthroughs for under-
standing neural networks [46].

10.2 System & Visual Scalability

Throughout this survey, we have covered many visual ana-
lytics systems that facilitate interpretation and model
understanding. However, some systems suffer from scal-
ability problems. Visual scalability challenges arise when
dealing with large data, e.g., large number of hyperpara-
meters and millions of parameters in deep neural networks.
Some research has started to address this, by simplifying

2. Popular libraries include TensorFlow [27], Keras, Caffe, PyTorch,
and Theano.

3. High impact industry blogs include: Google Research Blog,
OpenAI, Facebook Research Blog, the Apple Machine Learning Journal,
NVIDIA Deep Learning AI, and Uber AI.
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complex dataflow graphs and network weights for better
model explanations [14], [15], [52]. But, regarding activa-
tions and embeddings, dimensionality reduction techniques
have a limit to their usability when it comes to the number
of points to visualize [48]. We think this is an important
research direction, especially given that the information
visualization communities have developed techniques to
visualize large, high-dimensional data that could poten-
tially be applicable to deep learning [108].

Aside from visual scalability, some tools also suffer from
system scalability. While some of these problems may be
more engineering-centric, we think that for visual analytics
systems to adopted, they need to handle state-of-the-art deep
models without penalizing performance or increasing model
development time. Furthermore, these systems (often web-
based)will greatly benefit from fast computations, supporting
real-time, rich user interactions [50]. This is especially impor-
tant for visual systems that need to perform pre-computation
before rendering visualizations to the screen.

10.3 Design Studies for Evaluation: Utility &
Usability

An important facet of visualization research is the evaluation
of the utility and usefulness of the visual representation.
Equally important is to evaluate the usability of deployed sys-
tems and their interactive visual analytics techniques. It is
encouraging to see many of the visual analytics systems rec-
ognize this importance and report on design studies con-
ducted with AI experts before building a tool to understand
the users and their needs [14], [15], [19], [39], [43], [52]. It is
common to see example use cases or illustrative usage scenar-
ios that demonstrate the capabilities of the interactive sys-
tems. Some works go beyond these and conduct user studies
to evaluate utility and usability [31]. In the AI communities,
most works do not include user studies. For those that do,
they greatly benefit from showing why their proposed meth-
ods are superior to the ones being tested against [69], [89],
[109], [110]. Taking this idea to the quantifiable extreme, a
related avenue of evaluating these techniques is the notion
of quantifying interpretability, which has been recently
studied [28], [111]. Other domains have recognized that inter-
pretable deep learning research may require evaluation

techniques for their interpretations, and argue that there is a
large body of work from fields such as philosophy, cognitive
science, and social psychology that could be utilized [62],
[112].

When surveying the interfaces of deep learning visual
analytics tools, many of them contain multiple-coordinated
views with many visual representations. Displaying this
much information at once can be overwhelming, and when
interpretability is the primary focus, it is critical for these
systems to have superior usability. Therefore, we think
future works could further benefit from including more
members of the human-computer interaction communities,
including interface and user experience designers, that
could help organize and prioritize interfaces using well-
studied guidelines [86].

10.4 The Human Role in Interpretability

10.4.1 Human v. Machine Understanding of the World

In deep learning interpretability work, researchers are devel-
opingmethods to produce better explanations to “see through
the black-box,” but unfortunately some of these methods pro-
duce visualizations that, while visually interesting and
thought-provoking [98], are not fully understandable by their
human viewers. That is an important facet of deep learning
interpretability, namely, producing visualizations and inter-
pretations that are human understandable [88]. Some meth-
ods compare algorithmic results with an empirically derived
human baseline; this enables comparison between machine
and human generated responses to objects in the world, par-
ticularly in images [113]. Ultimately, researchers seek to
understand the commonalities and differences between how
humans and machines see and decompose the world [114].
Some tools that we have surveyed achieve this by using live-
video to compare the input images and the neural network’s
activations and filters in real time [55]. Other tools give users
explicit control of an experiment by training multiple small
models with only a few exposed hyperparameters, automati-
cally generating visualizations to then see the effect that the
input data has on the learned representation [38]. These
“what-if” tools and scenarios could potentially be extended to
incorporate human feedback into the training or model steer-
ing process of neural network to better improve performance.

10.4.2 Human-AI Pairing

Much of this survey is dedicated towards reviewing the
state-of-the-art in visual analytics for deep learning, with a
focus on interpretability. These works use visualization to
explain, explore, and debug models in order to choose the
best preforming model for a given task, often by placing a
human in the loop. However, a slight twist on this idea
hearkening back to the original envisioning of the computer
has lead to the emergence of a new research area, one
where tasks are not exclusively performed by humans or
machines, but one where the two complement each other.
This area, recently dubbed artificial intelligence augmentation
describes the use of AI systems to help develop new meth-
ods for intelligence augmentation [103]. Some related works
we have covered already propose artificial intelligence aug-
mentation ideas, such as a system that suggests potentially
interesting directions to explore in a high-dimensional 3D

Fig. 5. Distill: The Building Blocks of Interpretability [46]: An interactive
user interface that combines feature visualization and attribution techni-
ques to interpret neural networks.
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embedding [51], predicting and showing where the next
stroke of a word could be when handwriting text [32], auto-
matically generating images based off of user-provided
sketches [59], and dynamically changing and steering a neu-
ral network model while it trains [35]. We believe this is a
rich, under-explored area for future research: using well-
designed interfaces for humans to interact with machine
learning models, and for these machine learning models to
augment creative human tasks.

10.5 Social Good & Bias Detection

The aspirational pairing of humans and machines is a long-
term research endeavor. To quicken our pace, we must con-
tinue to democratize artificial intelligence via educational
tools, perhaps by using direct manipulation as an invitation
for people to engage with AI [16], [46], clear explanations
for model decision making, and robust tooling and libraries
for programming languages for people to develop such
models [15], [27]. While doing this, we must also ensure
that AI applications remain ethical, fair, safe, transparent,
and are benefiting society [63].

Another important consideration for future research is
detecting bias. This has been identified as a major problem in
deep learning [115], [116], and a number of researchers are
using visualization to understand why a model may be
biased [117]. One example that aims to detect data bias is
Google’s Facets tool [118], a visual analytics system designed
specifically to preview and visualize machine learning data-
sets before training. This allows one to inspect large datasets
by exploring the different classes or data instances, to see if
there are any high-level imbalances in the class or data
distribution.

Other works have begun to explore if the mathematical
algorithms themselves can be biased towards particular
decisions. An example of this is an interactive article titled
“Attacking discrimination with smarter machine learn-
ing” [117], which explores how one can can create both fair
and unfair threshold classifiers in an example task such as
loan granting scenarios where a bank may grant or deny a
loan based on a single, automatically computed number
such as a credit score. The article aims to highlight that equal
opportunity [119] is not preserved by machine learning algo-
rithms, and that as AI-powered systems continue to make
important decisions across core social domains, it is critical
to ensure decisions are not discriminatory.

Finally, aside from data and model bias, humans are
often inherently biased decision makers. In response,
there is a growing area of research into detecting and
understanding bias in visual analytics4 and its affect on
the decision making process [120]. Some work has devel-
oped metrics to detect types of bias to present to a user
during data analysis [120] which could also be applied to
visual tools for deep learning in the future. Some work
has employed developmental and cognitive psychology
analysis techniques to understand how humans learn,
focusing on uncovering how human bias is developed
and influences learning, to ultimately influence artificial
neural network design [112].

10.6 Protecting Against Adversarial Attacks

Regardless of the benefits AI systems are bringing to society,
wewould be remiss to immediately trust them; likemost tech-
nologies, AI too has security faults. Identified and studied in
seminal works, it has been shown that deep learning models
such as image classifiers can be easily fooled by perturbing an
input image [121], [122], [123]. Most alarming, some perturba-
tions are so subtle that they are untraceable by the human eye,
yetwould completely fool amodel intomisclassification [122].
This sparked great interest in the AI communities, and much
work has been done to understand how fragile deep neural
network image classifiers are, identify in what ways can they
break, and explore methods for protecting them. Norton
et al. [44] demonstrate adding adversarial perturbations to
images in an interactive tool, where users can tweak the type
and intensity of the attack, and observe the resulting (mis)
classification. This is a great first start for using visualization
to identify potential attacks, but we think visualization can be
majorly impactful in this research space, by not only showcas-
ing how the attacks work and detecting them, but also by tak-
ing action and protecting AI systems from the attacks
themselves. While some work, primarily originating from the
AI communities, has proposed computational techniques to
protect AI from attacks, such as identifying adversarial exam-
ples before classification [124], modifying the network archi-
tecture [125], modifying the training process [122], [126], and
performing pre-processing steps before classification [127],
[128], we think visualization can have great impact for com-
bating adversarial machine learning.

11 CONCLUSION

We presented a comprehensive, timely survey on visualiza-
tion and visual analytics in deep learning research, using a
human-centered, interrogative framework. Our method
helps researchers and practitioners in visual analytics and
deep learning to quickly learn key aspects of this young and
rapidly growing body of research, whose impact spans a
broad range of domains. Our survey goes beyond visualiza-
tion-focused venues to extend a wide scope that also encom-
passes relevant works from top venues in AI, ML, and
computer vision. We highlighted visual analytics as an inte-
gral component in addressing pressing issues in modern
AI, helping to discover and communicate insight, from dis-
cerning model bias, understanding models, to promoting
AI safety. We concluded by highlighting impactful research
directions and open problems.
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