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This paper provides an entry point to the problem of interpreting a deep neural network model and 
explaining its predictions. It is based on a tutorial given at ICASSP 2017. As a tutorial paper, the set of 
methods covered here is not exhaustive, but sufficiently representative to discuss a number of questions 
in interpretability, technical challenges, and possible applications. The second part of the tutorial focuses 
on the recently proposed layer-wise relevance propagation (LRP) technique, for which we provide theory, 
recommendations, and tricks, to make most efficient use of it on real data.
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(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine learning techniques such as deep neural networks 
have become an indispensable tool for a wide range of applica-
tions such as image classification, speech recognition, or natural 
language processing. These techniques have achieved extremely 
high predictive accuracy, in many cases, on par with human per-
formance.

In practice, it is also essential to verify for a given task, that 
the high measured accuracy results from the use of a proper prob-
lem representation, and not from the exploitation of artifacts in 
the data [39,62,35]. Techniques for interpreting and understanding 
what the model has learned have therefore become a key ingredi-
ent of a robust validation procedure [68,22,5]. Interpretability is es-
pecially important in applications such as medicine or self-driving 
cars, where the reliance of the model on the correct features must 
be guaranteed [17,16].

It has been a common belief, that simple models provide higher 
interpretability than complex ones. Linear models or basic decision 
trees still dominate in many applications for this reason. This belief 
is however challenged by recent work, in which carefully designed 
interpretation techniques have shed light on some of the most 
complex and deepest machine learning models [60,74,5,51,55,59].
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Techniques of interpretation are also becoming increasingly 
popular as a tool for exploration and analysis in the sciences. In 
combination with deep nonlinear machine learning models, they 
have been able to extract new insights from complex physical, 
chemical, or biological systems [29,1,65,58].

This tutorial gives an overview of techniques for interpreting 
complex machine learning models, with a focus on deep neural 
networks (DNN). It starts by discussing the problem of interpret-
ing modeled concepts (e.g. predicted classes), and then moves to 
the problem of explaining individual decisions made by the model. 
A second part of this tutorial will look in more depth at the re-
cently proposed layer-wise relevance propagation (LRP) technique 
[5]. The tutorial abstracts from the exact neural network structure 
and domain of application, in order to focus on the more con-
ceptual aspects that underlie the success of these techniques in 
practical applications.

In spite of the practical successes, one should keep in mind that 
interpreting deep networks remains a young and emerging field 
of research. There are currently numerous coexisting approaches 
to interpretability. This tutorial gives a snapshot of the field at 
present time and it is naturally somewhat biased towards the au-
thors view; as such we hope that it provides useful information to 
the reader.

2. Preliminaries

Techniques of interpretation have been applied to a wide range 
of practical problems, and various meanings have been attached to 
terms such as “understanding”, “interpreting”, or “explaining”. See 
[43] for a discussion. As a first step, it can be useful to clarify the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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meaning we assign to these words in this tutorial, as well as the 
type of techniques that are covered.

We will focus in this tutorial on post-hoc interpretability, i.e. a 
trained model is given and our goal is to understand what the 
model predicts (e.g. categories) in terms what is readily inter-
pretable (e.g. the input variables) [5,55]. Post-hoc interpretability 
should be contrasted to incorporating interpretability directly into 
the structure of the model, as done, for example, in [54,17,76,37,
73].

Also, when using the word “understanding”, we refer to a func-
tional understanding of the model, in contrast to a lower-level 
mechanistic or algorithmic understanding of it. That is, we seek 
to characterize the model’s black-box behavior, without however 
trying to elucidate its inner workings or shed light on its internal 
representations. Furthermore, while some methods aim at reaching 
a comprehensive functional understanding of the model [32,41,8], 
we will focus here on interpreting the outputs of a DNN, and ex-
plaining individual predictions.

Throughout this tutorial, we will make a distinction between 
interpretation and explanation, by defining these words as follows.

Definition 1. An interpretation is the mapping of an abstract con-
cept (e.g. a predicted class) into a domain that the human can 
make sense of.

Examples of domains that are interpretable are images (arrays 
of pixels), or texts (sequences of words). A human can look at 
them and read them respectively. Examples of domains that are 
not interpretable are abstract vector spaces (e.g. word embeddings 
[45]), or domains composed of undocumented input features (e.g. 
sequences with unknown words or symbols).

Definition 2. An explanation is the collection of features of the 
interpretable domain, that have contributed for a given example to 
produce a decision (e.g. classification or regression).

The features that form the explanation can be supplemented by 
relevance scores indicating to what extent each feature contributes. 
Practically, the explanation will be a real-valued vector of same 
size as the input, where relevant features are given positive scores, 
and irrelevant features are set to zero.

An explanation can be, for example, a heatmap highlighting 
which pixels of the input image most strongly support the clas-
sification decision [60,34,5]. In natural language processing, expla-
nations can take the form of highlighted text [42,3].

3. Interpreting a DNN model

This section focuses on the problem of interpreting a concept 
learned by a deep neural network (DNN). A DNN is a collection of 
neurons organized in a sequence of multiple layers, where neurons 
receive as input the neuron activations from the previous layer, and 
perform a simple computation (e.g. a weighted sum of the input 
followed by a nonlinear activation). The neurons of the network 
jointly implement a complex nonlinear mapping from the input to 
the output. This mapping is learned from the data by adapting the 
weights of each neuron using a technique called error backpropa-
gation [56]. An example of a neural network is shown in Fig. 1.

The concept that must be interpreted is usually represented 
by a neuron in the top layer. Top-layer neurons are abstract (i.e. 
we cannot look at them), on the other hand, the input domain 
of the DNN (e.g. image or text) is usually interpretable. We de-
scribe below how to build a prototype in the input domain that is 
interpretable and representative of the abstract learned concept. 
Building the prototype can be formulated within the activation 
maximization framework.
Fig. 1. Example of a neural network composed of many interconnected neurons, and 
that assigns to the input x a probability of being associated to a certain concept ωc .

3.1. Activation maximization (AM)

Activation maximization is an analysis framework that searches 
for an input pattern that produces a maximum model response for 
a quantity of interest [11,19,60].

Consider a DNN classifier mapping data points x to a set of 
classes (ωc)c . The output neurons encode the modeled class prob-
abilities p(ωc |x). A prototype x� representative of the class ωc can 
be found by optimizing:

max
x

log p(ωc|x) − λ‖x‖2.

The class probabilities modeled by the DNN are functions with a 
gradient [13]. This allows for optimizing the objective by gradient 
ascent. The rightmost term of the objective is an �2-norm regular-
izer that implements a preference for inputs that are close to the 
origin. When applied to image classification, prototypes thus take 
the form of mostly gray images, with only a few edge and color 
patterns at strategic locations [60]. These prototypes, although pro-
ducing strong class response, can look unnatural.

3.2. Improving AM with an expert

In order to obtain more meaningful prototypes, the �2-regular-
izer can be replaced by a more sophisticated one [44,52] called 
“expert”. The expert can be, for example, a model p(x) of the data. 
This leads to the new optimization problem:

max
x

log p(ωc|x) + log p(x).

The prototype x� obtained by solving this optimization problem 
will simultaneously produce strong class response and resemble 
the data. By application of the Bayes’ rule, the newly defined objec-
tive can be identified, up to modeling errors and a constant term, 
as the class-conditioned data density log p(x|ωc). The learned pro-
totype will thus correspond to the most likely input x for class ωc .

A possible choice for the expert is the Gaussian RBM [25]. It can 
represent complex distributions and has a gradient in the input 
domain. Its log-probability function can be written as:

log p(x) = ∑
j f j(x) − λ‖x‖2 + cst.,

where the terms f j(x) = log(1 + exp(w�
j x + b j)) are learned from 

the data, and come in superposition to the original �2-norm regu-
larizer. When interpreting concepts such as natural images classes, 
more complex density models such as convolutional RBM/DBMs 
[38], or pixel-RNNs [69] can be used instead. In practice, the choice 
of the expert p(x) plays an important role in determining the 
appearance of the resulting prototype. The dependence of the pro-
totype on the choice of expert is illustrated in Fig. 2.

On one extreme a coarse expert (a) reduces the optimiza-
tion problem to the maximization of the class probability function 
p(ωc |x). On the other extreme an overfitted expert (d) essentially 
reduces the optimization problem to the maximization of the ex-
pert p(x) itself.
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Fig. 2. Cartoon illustrating how the choice of expert p(x) affects the prototype x�

found by AM. The horizontal axis represents the input domain.

When using AM for the purpose of validating a DNN model, an 
overfitted expert (d) must be especially avoided, as the latter could 
hide interesting failure modes of the DNN model. A slightly under-
fitted expert (b), e.g. that simply favors images with natural colors, 
can therefore be sufficient. On the other hand, when using AM to 
gain knowledge on a concept ωc correctly predicted by the DNN, 
the focus should be to prevent underfitting. Indeed, an underfit-
ted expert (b) would expose optima of p(ωc |x) potentially distant 
from the data, and therefore, the prototype x� would not be truly 
representative of ωc . Hence, it is important in that case to learn a 
density model as close as possible to the true data distribution (c).

3.3. Performing AM in code space

In certain applications, data density models p(x) can be hard to 
learn up to high accuracy, or very complex such that maximizing 
them becomes difficult. An alternative class of unsupervised mod-
els are generative models. They do not provide the density function 
directly, but are able to sample from it, usually via the following 
two steps:

1. Sample from a simple distribution q(z) ∼ N (0, I) defined in 
some abstract code space Z .

2. Apply to the sample a decoding function g :Z →X , that maps 
it back to the original input domain.

One such model is the generative adversarial network [21]. It 
learns a decoding function g such that the generated data distri-
bution is as hard as possible to discriminate from the true data 
distribution. The decoding function g is learned in competition 
with a discriminant between the generated and the true distri-
butions. The decoding function and the discriminant are typically 
chosen to be multilayer neural networks.

Nguyen et al. [51] proposed to build a prototype for ωc by in-
corporating such generative model in the activation maximization 
framework. The optimization problem is redefined as:

max
z∈Z log p(ωc | g(z)) − λ‖z‖2,

where the first term is a composition of the newly introduced de-
coder and the original classifier, and where the second term is an 
�2-norm regularizer in the code space. Once a solution z� to the 
optimization problem is found, the prototype for ωc is obtained by 
decoding the solution, that is, x� = g(z�).

When the code distribution q(z) is chosen to be a normal distri-
bution, the �2 penalty −λ‖z‖2 becomes equivalent (up to a scaling 
factor and a constant) to log q(z), and can therefore be under-
stood as favoring codes with high probability. However, as high 
Fig. 3. Architectures supporting AM procedures and found prototypes. Black arrows 
indicate the forward path and red arrows indicate the reverse path for gradient 
computation. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

probability codes do not necessarily map to high density regions 
in the input space, the maximization in code space described in 
this section will only approximately optimize the desired quantity 
log p(x|ωc).

To illustrate the qualitative differences between the methods of 
Sections 3.1–3.3, we consider the problem of interpreting MNIST 
classes as modeled by a three-layer DNN. We consider for this task 
(1) a simple �2-norm regularizer λ‖x − x̄‖2 where x̄ denotes the 
data mean for ωc , (2) a Gaussian RBM expert p(x), and (3) a gener-
ative model with a two-layer decoding function, and the �2-norm 
regularizer λ‖z − z̄‖2 where z̄ denotes the code mean for ωc . Cor-
responding architectures and found prototypes are shown in Fig. 3. 
Each prototype is classified with full certainty by the DNN. How-
ever, only with an expert or a decoding function, the prototypes 
become sharp and realistic-looking.

3.4. From global to local analysis

When considering complex machine learning problems, proba-
bility functions p(ωc |x) and p(x) might be multimodal or strongly 
elongated, so that no single prototype x� fully represents the mod-
eled concept ωc . The issue of multimodality is raised by Nguyen 
et al. [53], who demonstrate in the context of image classification, 
the benefit of interpreting a class ωc using multiple local proto-
types instead of a single global one.

Producing an exhaustive description of the modeled concept ωc
is however not always necessary. One might instead focus on a 
particular region of the input space. For example, biomedical data 
is best analyzed conditioned on a certain development stage of a 
medical condition, or in relation to a given subject or organ.

An expedient way of introducing locality into the analysis 
would be to add a localization term η · ‖x − x0‖2 to the AM objec-
tive, where x0 is a reference point. The parameter η controls the 
amount of localization. As this parameter increases, the question 
“what is a good prototype of ωc?” becomes however insubstantial, as 
the prototype x� converges to x0 and thus looses its information 
content.

Instead, when trying to interpret the concept ωc locally, a more 
relevant question to ask is “what features of x make it representative 
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Fig. 4. Explanation of the prediction f (x) produced by the DNN for a given data 
point x. Here, f (x) represents the evidence for the target class (“boat”) as repre-
sented by the corresponding neuron just before the softmax layer.

of the concept ωc?”. This question gives rise to a second type of 
analysis, explaining DNN decisions, that will be the focus of the 
rest of this tutorial.

4. Explaining DNN decisions

In this section, we ask for a given data point x, what makes 
it representative of a certain concept ωc encoded at the output of 
the deep neural network (DNN). The output neuron that encodes 
this concept can be described as a function f (x) of the input.

A common approach to explanation is to view the data point x
as a collection of features (xi)

d
i=1, and to assign to each of these, a 

score Ri determining how relevant the feature xi is for explaining 
f (x). An example is given in Fig. 4.

In this example, an image is presented to the DNN, that finds 
some evidence for class “boat”. The prediction is then mapped 
back to the input domain. The explanation takes the form of a 
heatmap, where pixels with a high associated relevance score are 
shown in red. In this example, the explanation procedure right-
fully assigns relevance to the pixels representing actual boats in 
the image, and ignores most of the pixels in the background. In 
the next sections, we present several candidate methods for pro-
ducing these relevance scores.

4.1. Sensitivity analysis

A first approach to identify the most important input features 
is sensitivity analysis [77,66,29]. It is based on the model’s lo-
cally evaluated gradient or some other local measure of variation. 
A common formulation of sensitivity analysis defines relevance 
scores as

Ri(x) =
( ∂ f

∂xi

)2
, (1)

where the gradient is evaluated at the data point x. The most rele-
vant input features are those to which the output is most sensitive. 
The technique is easy to implement for a deep neural network, 
since the gradient can be computed using backpropagation [13,56]. 
Sensitivity analysis has been regularly used in scientific applica-
tions of machine learning such as medical diagnosis [29], ecologi-
cal modeling [20], or mutagenicity prediction [6]. More recently, it 
was also used for explaining the classification of images by deep 
neural networks [60].

Examples of explanations produced by sensitivity analysis when 
applied to the decisions of a convolutional DNN on MNIST are 
given in Fig. 5. For each digit x, the function f (x) to analyze is 
chosen to be the evidence for the true class.

We can observe that heatmaps are spatially discontinuous and 
scattered, and do not focus on the actual class-relevant features. 
This inadequate behavior can be attributed to the nature of sensi-
tivity analysis, which relates to the local variation of the function 
rather than to the function value itself. More specifically, it is easy 
Fig. 5. Sensitivity analysis applied to a convolutional DNN trained on MNIST, and 
resulting explanations (heatmaps) for selected digits. Red color indicates positive 
relevance scores. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

to show that relevance scores computed in Equation (1) are a de-
composition of the gradient square norm:

∑d
i=1 Ri(x) = ‖∇ f (x)‖2.

Thus, sensitivity analysis does not provide an explanation of the 
function value f (x), but of its local slope. In the example above, 
the heatmap indicates what pixels make the digit belong more/less
to the target class rather than what makes the digit belong to that 
class.

4.2. Simple Taylor decomposition

The Taylor decomposition [9,5] is a method that explains the 
model’s decision by decomposing the function value f (x) as a sum 
of relevance scores. The relevance scores are obtained by identifi-
cation of the terms of a first-order Taylor expansion of the function 
at some root point ̃x for which f (̃x) = 0. The root point should re-
move the information in the input that causes f (x) to be positive, 
e.g. the pattern in a given input image that is responsible for class 
membership as modeled by the function. Taylor expansion lets us 
rewrite the function as:

f (x) = ∑d
i=1 Ri(x) + O (xx�)

where the relevance scores

Ri(x) = ∂ f

∂xi

∣∣∣
x=̃x

· (xi − x̃i)

are the first-order terms, and where O (xx�) contains all higher-
order terms. Because these higher-order terms are typically non-
zero, this analysis only provides a partial explanation of f (x).

However, a special class of functions, piecewise linear and sat-
isfying the property f (t x) = t f (x) for t ≥ 0, is not subject to this 
limitation. Examples of such functions used in machine learning 
are homogeneous linear models, or deep ReLU networks without 
biases. A simple two-dimensional function of that class is depicted 
in Fig. 6 (left). It is composed of linear regions, each of them ex-
tending to the origin, and separated by hinges shown as dashed 
lines. The gradient can be computed everywhere, except on the 
hinges.

For these functions, we can always find a root point near the 
origin, x̃ = limε→0 ε · x, that incidentally lies on the same linear 
region as the data point x, and for which the second and higher-
order terms are zero.

Injecting this root point in the Taylor expansion, the function 
can be rewritten as

f (x) = ∑d
i=1 Ri(x) (2)

where the relevance scores simplify to

Ri(x) = ∂ f · xi .

∂xi
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Fig. 6. Function to analyze. High values of the function are shown in dark gray, low 
values are in light gray, and zero is in white. Gradient and input vectors, on which 
the analysis relies are shown as green and blue arrows. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

Fig. 7. Illustration of the pooling functionality: The original pixel-wise heatmap is 
shown on the left. The relevance scores are then pooled in three coarse regions of 
the image.

Relevance can here be understood as the product of sensitivity 
(given by the locally evaluated partial derivative) and saliency 
(given by the input value). That is, an input feature is relevant if it 
is both present in the data, and if the model positively reacts to it, 
as illustrated in Fig. 6 (right).

The ability of an explanation method to produce a decomposi-
tion of f (x), offers an interesting additional practical functionality: 
If the number of input variables is too large for the explanation to 
be interpretable, the decomposition can be coarsened by pooling
relevance scores over groups of features I:

RI(x) = ∑
i∈I Ri(x).

When the groups of features form a partition of the input features, 
these pooled relevance scores are becoming themselves a decom-
position of the function f (x):

f (x) = ∑
I RI(x).

Fig. 7 illustrates how from a pixel-wise decomposition, one can 
produce a coarser decomposition in terms of e.g. spatially mean-
ingful regions.

Lapuschkin et al. [35] used this technique in the context of 
an image classification task, to determine in what proportion the 
trained DNN model uses (1) the actual object and (2) its context, 
to produce a decision.

While we have demonstrated the usefulness of producing a de-
composition of f (x), one still needs to test whether Taylor decom-
position as defined above assigns relevance to the correct input 
features. Examples of explanations produced by simple Taylor de-
composition on a MNIST convolutional DNN are given in Fig. 8.

It can be observed that heatmaps are more complete than those 
obtained by sensitivity analysis. However, they are characterized 
by a large amount of negative relevance, here 38% of the total rel-
evance. This is much above the proportion of pixels that truly go 
against class evidence. This undesirable effect can be attributed to 
the choice of root point ̃x ≈ 0, which is too dissimilar from the ac-
tual data point x and thus does not sufficiently contextualize the 
Fig. 8. Simple Taylor decomposition applied to a convolutional DNN trained on 
MNIST, and resulting explanations. Red and blue colors indicate positive and neg-
ative relevance scores. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 9. Graphical depiction of the filtering mechanism. Here, only what passes 
through the first two neurons of the second hidden layer is further propagated.

explanation. A nearer root point is generally preferable, but is not 
guaranteed to exist. For example, in the toy example of Fig. 6, only 
two out of seven linear regions have such nearer root point.

4.3. Backward propagation techniques

An alternative approach to explaining the prediction of a DNN 
is to make explicit use of its graph structure, and proceed as fol-
lows: We start at the output of the network. Then, we move in 
the graph in reverse direction, progressively mapping the predic-
tion onto the lower layers. The procedure stops once the input of 
the network is reached. Layer-wise mappings can be engineered 
for specific properties.

Layer-wise relevance propagation (LRP) [5], for example, is ap-
plicable to general network structures including DNNs and ker-
nels. The layer-wise mappings are designed to ensure a relevance 
conservation property, where the share of f (x) received by each 
neuron is redistributed in same amount on its predecessors. The 
injection of negative relevance is controlled by hyperparameters. 
The method is presented in details in Section 5 and is the focus of 
the second part of this tutorial. For an earlier conserving propaga-
tion technique in the context of hierarchical networks, see [34].

Non-conserving backward propagation techniques include de-
convolution [74], and its extension guided backprop [63]. Both 
have been proposed for visualizing the predictions of convolutional 
DNNs. The first method relies on max-pooling layers to orient 
the propagated signal on the appropriate locations in the image. 
The second method relies on the ReLU activations for that pur-
pose. Unlike LRP and other conserving techniques, the visualization 
produced by these methods cannot directly be interpreted as rele-
vance scores. For comparison purposes, we can however take their 
absolute values and use them as relevance scores [57].

In comparison to the simple gradient-based methods of Sec-
tions 4.1 and 4.2, backward propagation techniques such as LRP 
or deconvolution were shown empirically to scale better to com-
plex DNN models [57]. These techniques provide a further practical 
advantage: The quantity being propagated can be filtered to only 
retain what passes through certain neurons or feature maps. The 
filtering functionality is depicted in Fig. 9.
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Table 1
Properties of various techniques for explaining DNN predictions. (�) 
pools variations of f . (†) technically applicable, but no clear inter-
pretation of the result.

pooling filtering

sensitivity analysis [60] �(�)

simple Taylor decomposition [5] �
deconvolution [74] (†) �
guided backprop [63] (†) �
layer-wise relevance propagation [5] � �

Fig. 10. LRP applied to a convolutional DNN trained on MNIST, and resulting expla-
nations for selected digits. Red and blue colors indicate positive and negative rele-
vance scores respectively. Heatmaps are shown next to those produced by guided 
backprop. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Filtering can be useful, for example, in the context of multi-
task learning, where some hidden neurons are specific to a given 
task and other neurons are shared. Filtering one or the other set 
of neurons allows for forming separate explanations for (1) what 
is specifically relevant to the given task, and (2) what is commonly 
relevant to all tasks. More generally, filtering can be used to cap-
ture multiple components of an explanation, that would otherwise 
be entangled. A systematic comparison of methods for explaining 
DNNs is given in Table 1.

5. Layer-wise relevance propagation (LRP)

LRP [5] is a backward propagation technique, specifically de-
signed for explanation. LRP was found to be broadly applicable 
[35,3,65,2], and to have excellent benchmark performance [57]. The 
LRP technique is rooted in a conservation principle, where each 
neuron receives a share of the network output, and redistributes it 
to its predecessors in equal amount, until the input variables are 
reached [5,34]. LRP is furthermore embeddable in the theoretical 
framework of deep Taylor decomposition [46].

Example of explanations produced by LRP are given in Fig. 10. 
Most of the digit contours are identified as relevant, and a few pix-
els such as the broken upper-loop of the last digit “8” are identi-
fied as negatively relevant. In comparison, non-conserving methods 
such as guided backprop cannot identify these negatively relevant 
areas. LRP heatmaps are also easier to interpret than those ob-
tained with the gradient-based methods of Sections 4.1 and 4.2.

A high-level graphical depiction of the LRP procedure applied 
to a deep neural network is given in Fig. 11.

In the first phase, a standard forward pass is applied to the net-
work and the activations at each layer are collected. In the second 
phase, the score obtained at the output of the network is propa-
gated backwards in the network, using a set of propagation rules 
that we provide in Section 5.1. In this layered graph structure, the 
relevance conservation property can be formulated as follows: Let 
j and k be indices for neurons of two successive layers. Let Rk be 
the relevance of neuron k for the prediction f (x). We define R j←k
as the share of Rk that is redistributed to neuron j in the lower 
layer. The conservation property for this neuron imposes
Fig. 11. Diagram of the LRP procedure (here after three steps of redistribution). Red 
arrows indicate the relevance propagation flow. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

∑
j R j←k = Rk.

Likewise, neurons in the lower layer aggregate all relevance coming 
from the neurons from the higher layer:

R j = ∑
k R j←k

These two equations, when combined, also ensure a relevance con-
servation property between layers (proof: 

∑
j R j = ∑

j

∑
k R j←k =∑

k

∑
j R j←k = ∑

k Rk). Conservation of relevance in the redistri-
bution process also holds globally, so that we can write the chain 
of equalities

∑d
i=1 Ri = · · · = ∑

j R j = ∑
k Rk = · · · = f (x),

where the leftmost and rightmost terms highlight the fact that the 
method computes a decomposition of f (x) in terms of input vari-
ables.

5.1. LRP propagation rules

Technically, this conservation property of LRP must be imple-
mented by a specific set of propagation rules. Let the neurons of 
the DNN be described by the equation

ak = σ
(∑

j a j w jk + bk
)
,

with ak the neuron activation, (a j) j the activations from the pre-
vious layer, and w jk, bk the weight and bias parameters of the 
neuron. The function σ is a positive and monotonically increas-
ing activation function.

One propagation rule that is locally conservative and that was 
shown to work well in practice is the αβ-rule [5] given by:

R j =
∑

k

(
α

a j w+
jk∑

j a j w+
jk

− β
a j w−

jk∑
j a j w−

jk

)
Rk, (3)

where each term of the sum corresponds to a relevance message 
R j←k , where ()+ and ()− denote the positive and negative parts 
respectively, and where the parameters α and β are chosen subject 
to the constraints α − β = 1 and β ≥ 0. To avoid divisions by zero, 
small stabilizing terms can be introduced when necessary. The rule 
can be rewritten as
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Fig. 12. Graphical depiction of the relevance redistribution process for one neuron, 
with different parameters α and β . Positive relevance is shown in red. Negative 
relevance is shown in blue. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 13. LRP explanations when choosing different LRP parameters α and β . Positive 
and negative relevance are shown in red and blue respectively. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

R j =
∑

k

a j w+
jk∑

j a j w+
jk

R∧
k +

∑
k

a j w−
jk∑

j a j w−
jk

R∨
k ,

where R∧
k = αRk and R∨

k = −βRk . It can now be interpreted as 
follows:

Relevance R∧
k should be redistributed to the lower-layer neurons 

(a j) j in proportion to their excitatory effect on ak. “Counter-rele-
vance” R∨

k should be redistributed to the lower-layer neurons (a j) j
in proportion to their inhibitory effect on ak.

Different combinations of parameters α, β were shown to mod-
ulate the qualitative behavior of the resulting explanation. As a 
naming convention, we denote, for example, by LRP-α2β1, the fact 
of having chosen the parameters α = 2 and β = 1 for this rule.

Fig. 12 depicts the redistribution process for a neuron with pos-
itive inputs and weights (w jk) j = (1, 0, −1). The higher α and β , 
the more positive and negative relevance are being created in the 
propagation phase.

Examples of explanations obtained with different values of α
and β are given in Fig. 13 for MNIST digits predicted by a convo-
lutional DNN. Unless stated otherwise, we use in all experiments 
the same parameters α and β for each hidden layer, except for the 
first layer, where we use a pixel-specific rule given later in Eq. (8).

When α = 1, the heatmaps contain only positive relevance, and 
the latter is spread along the contour of the digits in a fairly uni-
form manner. When choosing α = 2, some regions in the images 
become negatively relevant (e.g. the broken upper-loop of the last 
digit “8”), but the negative relevance still amounts to only 5% of 
the total relevance. When setting the higher value α = 3, negative 
relevance starts to appear in a seemingly random fashion, with the 
share of total relevance surging to 30%. For this simple example, a 
good choice of propagation rule is LRP-α2β1.

On the deeper BVLC CaffeNet [28] for image recognition, 
LRP-α2β1 was also shown to work well [5]. For the very deep 
Fig. 14. Diagram of the relevance neuron, its analysis, and the relevance propagation 
resulting from the analysis. The root search segment is shown in blue. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

GoogleNet [67], however, LRP-α1β0 was found to be more stable 
[46].

When choosing the parameters α = 1 and β = 0, the propaga-
tion rule reduces to the simpler rule:

R j =
∑

k

a j w+
jk∑

j a j w+
jk

Rk. (4)

This simpler rule allows for an interpretation of LRP as a deep Tay-
lor decomposition [46], that we present below. The same simple 
rule was also used later by Zhang et al. [75] as part of an explana-
tion method called excitation backprop.

5.2. LRP and deep Taylor decomposition

In this section, we show for deep ReLU networks a connection 
between LRP-α1β0 and Taylor decomposition. We show in particu-
lar that when neurons are defined as

ak = max
(
0,

∑
j a j w jk + bk

)
with bk ≤ 0,

the application of LRP-α1β0 at a given layer can be seen as com-
puting a Taylor decomposition of the relevance at that layer onto 
the lower layer. The name “deep Taylor decomposition” then arises 
from the iterative application of Taylor decomposition from the 
top layer down to the input layer. The analysis relies on a special 
structure of the relevance scores Rk at each layer, which have to 
be the product of the corresponding neuron activations and posi-
tive constant terms. This assumption is necessary in order to apply 
the Taylor decomposition framework to these neurons. Similarly, 
the Taylor decomposition procedure must also ensure that result-
ing relevances in the lower layer have the same product structure, 
so that relevance can be further propagated backwards.

Let us assume that the relevance for the neuron k can be writ-
ten as Rk = akck , a product of the neuron activation ak and a term 
ck that is constant and positive. These two properties allow us to 
construct a “relevance neuron”

Rk = max
(
0,

∑
j a j w ′

jk + b′
k

)
, (5)

with parameters w ′
jk = w jkck and b′

k = bkck . The relevance neuron 
Rk is shown graphically in Fig. 14(a), and as a function of (a j) j
in Fig. 14(b). The gradient of grays depicts the neuron’s linear ac-
tivation domain, and the dashed line indicates the hinge of that 
function.

We now would like to propagate the relevance to the lower 
layer. For this, we perform a Taylor decomposition of Rk . Because 
the relevance neuron is linear on its activated domain, one can 
always take a root point at the limit of zero activation. Thus, the 
Taylor expansion at this root point contains only first-order terms 
and is given by

Rk =
∑

j

∂ Rk

∂a j

∣∣∣
(̃a j) j

· (a j − ã j)

︸ ︷︷ ︸
R j←k

. (6)
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We search for the nearest root point (̃a j) j of Rk on the segment 
S = [(a j1w ′

jk≤0) j, (a j) j]. The search segment is visualized as a blue 
line in Fig. 14(b). This search strategy can be interpreted as slowly 
removing the excitatory inputs until the relevance neuron becomes 
deactivated. Injecting the found root point (̃a j) j in Equation (6), 
one gets the following closed-form expression:

R j←k = a j w+
jk∑

j a j w+
jk

Rk. (7)

The resulting propagation of Rk on the input neurons is illustrated 
in Fig. 14(c). Summing R j←k over all neurons k to which neuron j
contributes yields exactly the LRP-α1β0 propagation rule of Equa-
tion (4).

We now would like to verify that this relevance redistribution 
procedure can be repeated one layer below. For this, we inspect 
the structure of R j given in Equation (4), and observe that it can be 
written as a product R j = a jc j , where a j is the neuron activation 
and

c j =
∑

k

w+
jk∑

j a j w+
jk

Rk

=
∑

k

w+
jk

max
(
0,

∑
j a j w jk + bk

)
∑

j a j w+
jk

ck

is positive and also approximately constant. The latter property 
arises from the observation that the dependence of c j on the ac-
tivation a j is only very indirect (diluted by two nested sums), and 
that the other terms w jk, w+

jk, bk, ck are constant or approximately 
constant.

The positivity and near-constancy of c j imply that similar rele-
vance neuron to the one of Equation (5) can be built for neuron j, 
for the purpose of redistributing relevance on the layer before. The 
decomposition process can therefore be repeated in the lower lay-
ers, until the first layer of the neural network is reached, thus, 
performing a deep Taylor decomposition [46].

5.3. Handling special layers

In the section above, we have presented the general deep Taylor 
decomposition principle underlying the propagation of relevance 
in a sequence of ReLU layers. To ensure a broader applicability for 
LRP, other layer types need to be considered:

Input layer. The input layer is special in the sense that its input 
domain differs from the hidden layers. Deep Taylor decomposition 
adapts to the new input domain by modifying the root search di-
rection S to remain inside of it [46]. For example, when the input 
domain is defined by the box constraints li ≤ xi ≤ hi (e.g. pixel 
values restricted between black and white), an appropriate search 
direction S will point to the corner of the box opposite to the di-
rection of the weight vector. This results in the new propagation 
rule:

Ri =
∑

j

xi wij − li w+
i j − hi w−

i j∑
i xi wij − li w+

i j − hi w−
i j

R j. (8)

For a derivation and further propagation rules, see [46]. More com-
plex rules that not only take into consideration the input domain 
but also the statistics of the data within that domain were recently 
proposed [30].

Pooling layer. In order to provide spatial or temporal invariance, 
neural networks often incorporate pooling layers. The �p -pooling 
layer has its output defined as
ak = p
√∑

j ap
j ,

where (a j) j are the activations inside the pool. A possible propa-
gation rule for this layer is

R j←k = a j∑
j a j

Rk, (9)

i.e. redistribution in proportion to the neuron activations. This rule 
selects the most relevant neurons in the pool, while also ensuring 
a continuous transition in the space of pooled activations. This rule 
also has a deep Taylor interpretation for the case p = 1: One first 
needs to observe that the pooling operation over positive activa-
tions is equivalent to a simple ReLU neuron with weights w jk = 1, 
and then observe that Eq. (9) coincides with Eq. (7) for that par-
ticular choice of weights.

Other layers. In practical applications, a variety of layers and ar-
chitectures are used to handle specific types of signals or to reach 
maximum performance. Examples are LSTMs [26], normalization 
layers [27,33], or improved element-wise nonlinearities [31]. Al-
though some propagation rules have been shown to work well in 
practice [5,12,4], it is still an open question whether the deep Tay-
lor decomposition framework can also be extended to these layers.

6. Recommendations and tricks

Machine learning methods are often described in papers at an 
abstract level, for maximum generality. However, a good choice of 
hyperparameters is usually necessary to make them work well on 
real-world problems, and tricks are often used to make most effi-
cient use of these methods and extend their capabilities [10,25,47]. 
Likewise, techniques of interpretation often come with their own 
set of recommendations and tricks. While this section is mainly fo-
cused on LRP, part of the discussion also applies to interpretation 
techniques in general.

6.1. Structuring the DNN for maximum explainability

We consider here a standard and generally successful class of 
architectures: DNNs with convolution layers and ReLU neurons. We 
then ask what specific architectures within that class, can be ex-
pected to work optimally with explanation techniques such as LRP. 
Our first recommendation relates to the global layer-wise structure 
of the network:

Use as few fully-connected layers as needed to be accurate, and train 
these layers with dropout.

A reduced number of fully-connected layers avoids that the rele-
vance, when redistributed backwards, looses its connection to the 
concept being predicted. Training these layers with dropout [64]
helps to better align the filters with the actual features, and further 
encourages the relevance to be redistributed only to the limited set 
of task-relevant neurons. The second recommendation focuses on 
spatial or temporal pooling:

Use sum-pooling layers abundantly, and prefer them to other types of 
pooling layers.

As discussed in Section 5.3, sum-pooling layers are directly 
embeddable in the deep Taylor decomposition framework. Sum-
pooling layers also admit a unique root point in the space of 
positive activations [46], which allows for an unambiguous choice 
of LRP redistribution rule Eq. (9). A global sum-pooling layer at 
the top of a DNN was further advocated by Zhou et al. [76] as a 
way of spatially localizing class-relevant information. A third rec-
ommendation concerns the linear layers in the DNN architecture:
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In the linear layers (convolution and fully-connected), constrain bi-
ases to be zero or negative.

The use of negative biases strengthens the interpretation of LRP 
as a deep Taylor decomposition. A second more intuitive argument 
in favor of negative biases is that they further sparsify the network 
activations, and in turn, encourage relevance to be redistributed on 
a limited number of neurons.

6.2. Choosing the LRP rules for explanation

In presence of a deep neural network that follows the recom-
mendations above, or a more general successfully trained DNN, a 
first set of propagation rules to be tried are the ones derived from 
deep Taylor decomposition Eqs. (4), (8), (9). These rules exhibit a 
stable behavior and are also well-understood theoretically.

As a default choice, use the deep Taylor LRP rules.

Eq. (4) in particular, corresponds to the LRP-α1β0 rule and ap-
plies to the hidden layers. In presence of predictive uncertainty, a 
certain number of input variables might be in contradiction with 
the prediction, and the concept of “negative relevance” must there-
fore be introduced. Negative relevance can be injected into the 
explanation in a controlled manner by setting the hyperparame-
ters α, β to more appropriate values.

If negative relevance is needed, or the heatmaps are too diffuse, re-
place the rule LRP-α1β0 by LRP-α2β1 in the hidden layers.

The LRP-α1β0 and LRP-α2β1 rules were shown to work well on 
image classification [46], but there is a potentially much larger set 
of rules that we can choose from. For example, the “ε-rule” [5] was 
applied successfully to text categorization [3,4]. To choose the most 
appropriate rule among the set of possible ones, one can define a 
heatmap quality criterion, and select the LRP rules accordingly.

If the heatmaps are still unsatisfactory (or if it is unclear whether they 
are), consider a larger set of propagation rules, and use the techniques 
of Section 7 to select the best one.

This places all the weight on the heatmap quality criterion, but 
can lead in principle to better choices of hyperparameters, poten-
tially different for each layer.

6.3. Tricks for implementing LRP

Although the LRP rules are expressed in this paper for indi-
vidual neurons, they can be implemented easily and efficiently on 
large fully-connected or convolution layers. Let us consider, for ex-
ample, the LRP-α1β0 propagation rule of Equation (4):

R j = a j

∑
k

w+
jk∑

j a j w+
jk

Rk,

where we have for convenience moved the neuron activation a j
outside the sum. This rule can be written as four elementary com-
putations, all of which can also expressed in vector form:

element-wise vector form

zk ← ∑
j a j w+

jk z ← W �+ · a (10)

sk ← Rk/zk s ← R � z (11)

c j ← ∑
k w+

jksk c ← W+ · s (12)

R j ← a jc j R ← a � c (13)
In the vector form computations, � and � denote the element-
wise division and multiplication. The variable W denotes the 
weight matrix connecting the neurons of the two consecutive lay-
ers, and W+ is the matrix retaining only the positive weights of W
and setting remaining weights to zero. This vector form is useful 
to implement LRP for fully connected layers.

In convolution layers, the matrix-vector multiplications of Equa-
tions (10) and (12) can be more efficiently implemented by bor-
rowing the forward and backward methods used for forward 
activation and gradient propagation. These methods are readily 
available in many neural network libraries and are typically highly 
optimized. Based on these high-level primitives, LRP can be imple-
mented by the following sequence of operations:

def lrp(layer,a,R):

clone = layer.clone()
clone.W = maximum(0,layer.W)
clone.B = 0

z = clone.forward(a)
s = R / z
c = clone.backward(s)

return a * c

The function lrp receives as arguments the layer through 
which the relevance should be propagated, the activations “a” at 
the layer input, and the relevance scores “R” at the layer output. 
The function returns the redistributed relevance at the layer input.

If correctly implemented, and assuming that the convolutions 
and matrix multiplications are where most of the computation 
time is spent, the computational complexity of LRP (including for-
ward pass) scales linearly with the forward pass, with some con-
stant factor: ×3 for LRP-α1β0, ×5 for general parameters α and β , 
and ×7 for the rule of Equation (8) specific to pixel intensities.

Sample code for these propagation rules and for the com-
plete layer-wise propagation procedure is provided at http :/ /
heatmapping .org /tutorial. A similar modular approach was also 
used by Zhang et al. [75] to implement the excitation backprop 
method. In addition, an LRP toolbox [36] was developed, that can 
be used to apply LRP to state-of-the-art convolutional DNNs.

6.4. Translation trick for denoising heatmaps

It is sometimes observed that, for classifiers that are not op-
timally trained or structured, heatmaps have unaesthetic features. 
This can be caused, for example, by the presence of noisy first-
layer filters, or a large stride parameter in the first convolution 
layer. These effects can be mitigated by considering the explana-
tion not of a single input image, but of multiple slightly translated 
versions of the image. The heatmaps for these translated versions 
are then recombined by applying to them the inverse translation 
operation and averaging them up. In mathematical terms, the im-
proved heatmap is given by:

R�(x) = 1

|T |
∑
τ∈T

τ−1(R(τ (x)))

where τ , τ−1 denote the translation and its inverse, and T is the 
set of all translations of a few pixels. Note that this translation trick 
preserves the spatial resolution of the heatmap and is therefore 
not the same as simple heatmap blurring. This trick was used, for 
example, by Arbabzadah et al. [2] to reduce the stride artifact of 

http://heatmapping.org/tutorial
http://heatmapping.org/tutorial
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Fig. 15. Heatmaps obtained by explaining a fully-connected DNN on MNIST with 
LRP-α2β1, and denoised heatmaps resulting from applying translations.

the first convolution layer when explaining facial expression data 
with LRP.

If choosing too few translations, the denoising effect is limited. 
If choosing too many translations, the model might receive un-
expected inputs, and can consequently produce erratic decisions. 
Additionally, too much evidence will be assigned to examples for 
which the prediction is more translation invariant.

The effect of the translation trick on a fully-connected DNN is 
shown in Fig. 15. The original heatmap is noisy. Adding transla-
tions up to two pixels in all directions (5 × 5 translations) already 
produces much cleaner heatmaps. Adding more translations fur-
ther denoises the heatmaps but also changes the amount of evi-
dence attributed to each input image, e.g. the heatmap for the first 
digit “8” becomes weaker.

The general idea of using translations for denoising is also ap-
plicable to other interpretation techniques: For example, the tech-
niques of Section 3 can be enhanced by forcing the class prototype 
x� to produce consistently high responses under small translations. 
Mordvintsev et al. [50] used a similar trick as part of the inception-
ism technique for visualizing DNNs.

6.5. Sliding window explanations for large images

In applications such as medical imaging or scene parsing, the 
images to be processed are typically larger than what the neural 
network has been trained on and receives as input. Let X be this 
large image. The LRP procedure can be extended for this scenario 
by applying a sliding window strategy, where the neural network 
is moved through the whole image, and where heatmaps produced 
at various locations must then be combined into a single large 
heatmap. Technically, we define the quantity to explain as:

g(X) =
∑
s∈S

f (X[s]︸︷︷︸
x

)

where X[s] extracts a patch from the image X at location s, and 
S is the set of all locations in that image. Pixels then receive rel-
evance from all patches to which they belong and in which they 
contribute to the function value f (x). This technique is illustrated 
in Fig. 16.

When f is a convolutional network, a more direct approach 
is to add a global top-level pooling layer to the network (after 
training), and feed the whole image X to it. This direct approach 
can provide a computational gain compared to the sliding win-
dow method. However, it is not strictly equivalent and can produce 
unreliable heatmaps, e.g. when the network uses border-padded 
convolutions. In doubt, it is preferable to use the sliding window 
approach.
Fig. 16. Highlighting in a large image pixels that are relevant for the CIFAR-10 class 
“horse”, using the sliding window technique.

Fig. 17. Transferring the explanation parameters from a known domain (MNIST), to 
a potentially less known target domain.

7. Evaluating explanation quality

For general tasks, e.g. in the sciences, it can be difficult to deter-
mine objectively whether an explanation technique is good or not, 
as the concept predicted by the DNN may only be interpretable by 
an expert. Here, we present some strategies to systematically and 
objectively assess the quality of explanations. Section 7.1 discusses 
how a simple related task can serve as a proxy for that purpose. 
Sections 7.2 and 7.3 discuss how to perform such quality assesse-
ment by looking analytically at the explanation function and its 
relation to the prediction.

7.1. Transfer with a simple task

Consider the case where the task of interest is related to a 
known simple task (e.g. same input domain, same structure of the 
prediction, and similar neural network architecture needed to solve 
it). On the simple task, it is usually easier to determine whether an 
explanation is good or bad, as the task typically involves daily-life 
concepts for which we know what are the important features. The 
simple task can therefore be used as a proxy for the task of inter-
est, in order to evaluate explanation quality.

This idea is illustrated in Fig. 17, in the context of selecting 
the most appropriate parameters of an explanation technique. In 
this example, we would like to explain the prediction of a DNN 
trained on a handwritten characters dataset [70]. We first find the 
parameters that best explain the prediction of a DNN trained on 
the simple and related MNIST data. Then, the found parameters 
are applied to the original problem.
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Fig. 18. Explaining max(x1, x2). Function values are represented as a contour plot, 
with dark regions corresponding to high values. Relevance scores are represented 
as a vector field, where horizontal and vertical components are the relevance of 
respective input variables.

We can observe that the heatmaps look similar across domains, 
with a similar placement of relevance around the handwriting 
strokes and a similar share of negative relevance. In the target 
domain, LRP identifies important features such as the upper tri-
angle for the character “A”, and the two vertically stacked rounded 
strokes for the character “B”. It also identifies as negatively rele-
vant a defect in the second character “B”, where the vertical bar is 
too distant.

However, when a simple related task is not available, it be-
comes essential to be able to define at a more abstract level what 
are the characteristics of a good explanation, and to be able to test 
for these characteristics quantitatively. We present in the following 
two important properties of an explanation, along with possible 
evaluation metrics.

7.2. Explanation continuity

A desirable property of an explanation technique is that it 
produces a continuous explanation function. Here, we implic-
itly assume that the prediction function f (x) is also continu-
ous. We would like to ensure in particular the following behav-
ior:

If two data points are nearly equivalent, then the explanations of their 
predictions should also be nearly equivalent.

Explanation continuity (or lack of it) can be quantified by look-
ing for the strongest variation of the explanation R(x) in the input 
domain:

max
x �=x′

‖R(x) − R(x′)‖1

‖x − x′‖2
.

The problem of explanation continuity is first illustrated in Fig. 18
for the simple function f (x) = max(x1, x2) in R2+ , here imple-
mented by the two-layer ReLU network

f (x) = max
(
0 ,0.5 max(0, x1 − x2)

+ 0.5 max(0, x2 − x1)

+ 0.5 max(0, x1 + x2)
)
.

It can be observed that despite the continuity of the prediction 
function, the explanations offered by sensitivity analysis and sim-
ple Taylor decomposition are discontinuous on the line x1 = x2. 
Here, only LRP produces a smooth transition.

Techniques that rely on the function’s gradient, such as sen-
sitivity analysis or simple Taylor decomposition, are also strongly 
exposed to derivative noise [61] that characterizes complex ma-
chine learning models. More specifically, they are subject to the 
problem of shattered gradients [7,49] occurring in deep ReLU net-
works: The number of piecewise-linear regions tends to grow very 
Fig. 19. Classification “2” by a DNN, explained by different methods, as we move 
a handwritten digit from left to right. The function value is shown in black and 
relevance scores (pooled in four quadrants) are shown in colors from pink to orange. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

quickly with depth, and thus cause the gradient to become strongly 
discontinuous and loose its information content.

Fig. 19 looks at the continuity of relevance scores for sensitiv-
ity analysis and LRP-α2β1, when applying them to a convolutional 
DNN trained on MNIST. We move in the input space by slowly 
translating a MNIST digit from left to right, and keep track of the 
function value and the relevance scores of the two explanation 
methods.

Although the function f (x) is continuous, relevance scores pro-
duced by sensitivity analysis are strongly varying. Here again, only 
LRP produces continuous explanations.

7.3. Explanation selectivity

Another desirable property of an explanation is that it redis-
tributes relevance to variables that have the strongest impact on 
the function value f (x). Bach et al. [5] and Samek et al. [57]
proposed to quantify selectivity by measuring how fast f (x) goes 
down when removing features with highest relevance scores.

The method was introduced for image data under the name 
“pixel-flipping” [5,57], and was also adapted to text data, where 
words selected for removal have their word embeddings set to 
zero [3]. The method works as follows:

Sort features from most to least relevant (R1 ≥ · · · ≥ Rd)

for i from 1 to d:

• record the current function value f (x)

• remove the ith most relevant feature (x ← x − {xi})

make a plot with all recorded function values, and return 
the area under the curve (AUC) for that plot.

A sharp drop of function’s value, summarized by a low AUC score 
indicates that the correct features have been identified as relevant. 
Plots and AUC results can be averaged over a large number of ex-
amples in the dataset.

Fig. 20 illustrates the procedure on the same DNN as in Fig. 19. 
At each iteration, a patch of size 4 × 4 corresponding to the re-
gion with highest relevance is set to black. The plot keeps track of 
the function value f (x) as the features are being progressively re-
moved and computes an average over a large number of examples. 
The plot indicates that LRP and guided backprop are more selec-
tive than sensitivity analysis and simple Taylor decomposition, and 
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Fig. 20. Illustration of the “pixel-flipping” procedure. At each step, the next most 
relevant region according to the heatmap is removed (by setting it to black), and 
the function value f (x) is recorded.

that LRP-α2β1 scores the best among all methods. This success can 
be attributed to the ability of LRP to model negative evidence. This 
negative evidence is preserved during the whole pixel-flipping pro-
cedure, thus further lowering the function value f (x). We refer to 
Samek et al. [57] for a more comprehensive comparison between 
different explanation methods.

The choice of a patch instead of a pixel as a unit of removal 
lets the analysis focus on removing actual content of the image, 
and avoids introducing pixel artifacts. For natural images, various 
patch replacement strategies (e.g. gray patch, random noise, Gaus-
sian blur) as well as various patch sizes (up to 19 ×19 pixels) have 
been used in practice [57]. For text categorization, Arras et al. [3]
choose the word as a unit of feature removal, and remove words 
by setting their associated word2vec vector to zero.

It is important to note that the result of the analysis depends to 
some extent on the feature removal process. As mentioned above, 
various feature removal strategies can be used, but a general rule is 
that it should keep as much as possible the data point being mod-
ified on the data manifold. Indeed, this guarantees that the DNN 
continues to work reliably through the whole feature removal pro-
cedure. This in turn makes the analysis less subject to uncontrolled 
factors of variation.

8. Applications

Potential applications of explanation techniques are vast and 
include as diverse domains as extraction of domain knowledge, 
computer-assisted decisions, data filtering, or compliance. We fo-
cus in this section on two types of applications: validation of a 
trained model, and analysis of scientific data.

8.1. Model validation

Model validation is usually achieved by measuring the error on 
some validation set disjoint from the training data. While provid-
ing a simple way to evaluate a machine learning model in practice, 
the validation error is only a proxy for the true error, as the val-
idation set might differ statistically from the true distribution. A 
human inspection of the model rendered interpretable can thus be 
a good complement to the basic validation procedure. We present 
two recent examples showing how explainability allows to better 
validate a machine learning model by pointing out at some unsus-
pected qualitative properties of it.

Arras et al. [3] considered a document classification task on the 
20-Newsgroup dataset, and compared the explanations of a con-
Fig. 21. Examples taken from the literature of model validation via explanation. (a) 
Explanation of the concept “sci.space” by two text classifiers. (b) Unexpected 
use of copyright tags by the Fisher vector model for predicting the class “horse”.

volutional neural network (CNN) trained on word2vec inputs to 
the explanations of a support vector machine (SVM) trained on 
bag-of-words (BoW) document representations. A LRP procedure 
was applied to each model to produce the explanations. The au-
thors observed that, although both models produce a similar test 
error, the CNN model assigns most relevance to a small number of 
keywords, whereas the SVM classifier relies on word count regular-
ities. Fig. 21(a) displays explanations for an example of the target 
class sci.space.

Lapuschkin et al. [35] compared the decisions taken by convo-
lutional DNN transferred from ImageNet, and a Fisher vector clas-
sifier on PASCAL VOC 2012 images. Although both models reach 
similar classification accuracy on the category “horse”, the authors 
observed that they use different strategies to classify images of 
that category. A LRP procedure was applied to explain the predic-
tions of both models. Explanations for a given image are shown in 
Fig. 21(b). The deep neural network looks at the contour of the ac-
tual horse, whereas the Fisher vector model (of more rudimentary 
structure and trained with less data) relies mostly on a copyright 
tag, that happens to be present on many horse images. Removing 
the copyright tag in the test images would consequently signifi-
cantly decrease the measured accuracy of the Fisher vector model 
but leave the deep neural network predictions unaffected.

Once a weakness of the model has been identified by say LRP, 
various countermeasures can be taken to improve the model. For 
example, the reliance of the model on a data artifact (e.g. a copy-
right tag) can be mitigated by removing it (or injecting similar 
artifact in other classes), and retraining the model. A model that 
decides based on too many input variables can be retrained with a 
sparsity penalty. The rich feedback provided by explanation allows 
in principle to explore the space of DNN models in a more guided 
manner than a validation procedure based only on classification 
error.

8.2. Analysis of scientific data

Beyond model validation, techniques of explanation can also be 
applied to shed light on scientific problems where human intuition 
and domain knowledge is often limited. Simple statistical tests and 
linear models have proved useful to identify correlations between 
different variables of a system, however, the measured correlations 
typically remain weak due to the inability of these models to cap-
ture the underlying complexity and nonlinearity of the studied 
problem. For a long time, the computational scientist would face 
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Fig. 22. Overview of several applications of machine learning explanation tech-
niques in the sciences. (a) Molecular response maps for quantum chemistry, (b) 
EEG heatmaps for neuroimaging, (c) extracting relevant information from gene se-
quences, (d) analysis of facial appearance.

a tradeoff between interpretability and predictive power, where 
linear models would sometimes be preferred to nonlinear mod-
els despite their typically lower predictive power. We give below 
a selection of recent works in various fields of research, that com-
bine deep neural networks and explanation techniques to extract 
insight on the studied scientific problems.

In the domain of atomistic simulations, powerful machine 
learning models have been produced to link molecular structure 
to electronic properties [48,23,58,18]. These models have been 
trained in a data-driven manner, without simulated physics in-
volved into the prediction. In particular, Schütt et al. [58] proposed 
a deep tensor neural network model that incorporates sufficient 
structure and representational power to simultaneously achieve 
high predictive power and explainability. Using a test-charge per-
turbation analysis (a variant of sensitivity analysis where one 
measures the effect on the neural network output of inserting 
a charge at a given location), three-dimensional response maps 
were produced that highlight for each individual molecule spatial 
structures that were the most relevant for explaining the mod-
eled structure-property relationship. Example of response maps 
are given in Fig. 22(a) for various molecules.

Sturm et al. [65] showed that explanation techniques can also 
be applied to EEG brain recording data. Because the input EEG 
pattern can take different forms (due to different users, environ-
ments, or calibration of the acquisition device), it is important to 
produce an individual explanation that adapts to these parame-
ters. After training a neural network to map EEG patterns to a 
set of movements imagined by the user (“right hand” and “foot”), 
a LRP decomposition of that prediction could be achieved in the 
EEG input domain (a spatiotemporal signal capturing the electrode 
measurements at various positions on the skull and at multiple 
time steps), and pooled temporally to produce EEG heatmaps re-
vealing from which part of the brain the decision for “right hand” 
or “foot” originates. An interesting property of decomposition tech-
niques in this context is that temporally pooling preserves the total 
function value, and thus, still corresponds to a decomposition of 
the prediction. Examples of these individual EEG brain maps are 
given in Fig. 22(b). For classical linear explanation of neural ac-
tivation patterns in cognitive brain science experiments or Brain 
Computer Interfacing, see [15,40,14,24].

Deep neural networks have also been proposed to make sense 
of the human genome. Alipanahi et al. [1] trained a convolutional 
neural network to map the DNA sequence to protein binding sites. 
In a second step, they asked what are the nucleotides of that se-
quence that are the most relevant for explaining the presence of 
these binding sites. For this, they used a perturbation-based anal-
ysis, similar to the sensitivity analysis described in Section 4.1, 
where the relevance score of each nucleotide is measured based on 
the effect of mutating it on the neural network prediction. Other 
measures of feature importance for individual gene sequences have 
been proposed [71,72]. They apply to a broad class of nonlinear 
models, from deep networks to weighted degree kernel classifiers. 
Examples of heatmaps representing relevant genes for various se-
quences and prediction outcomes are shown in Fig. 22(c).

Explanation techniques also have a potential application in the 
analysis of face images. These images may reveal a wide range of 
information about the person’s identity, emotional state, or health. 
However, interpreting them directly in terms of actual features of 
the input image can be difficult. Arbabzadah et al. [2] applied a LRP 
technique to identify which pixels in a given image are responsible 
for explaining, for example, the age and gender attributes. Example 
of pixel-wise explanations are shown in Fig. 22(d).

9. Conclusion

Building transparent machine learning systems is a convergent 
approach to both extracting novel domain knowledge and perform-
ing model validation. As machine learning is increasingly used in 
real-world decision processes, the necessity for transparent ma-
chine learning will continue to grow. Examples that illustrate the 
limitations of black-box methods were mentioned in Section 8.1.

This tutorial has covered two key directions for improving ma-
chine learning transparency: interpreting the concepts learned by a 
model by building prototypes, and explaining the model’s decisions 
by identifying the relevant input variables. The discussion mainly 
abstracted from the exact choice of deep neural network, train-
ing procedure, or application domain. Instead, we have focused on 
the more conceptual developments, and connected them to recent 
practical successes reported in the literature.

In particular we have discussed the effect of linking prototypes 
to the data, via a data density function or a generative model. We 
have described the crucial difference between sensitivity analysis 
and decomposition in terms of what these analyses seek to ex-
plain. Finally, we have outlined the benefit in terms of robustness, 
of treating the explanation problem with graph propagation tech-
niques rather than with standard analysis techniques.

This tutorial has focused on post-hoc interpretability, where 
we do not have full control over the model’s structure. Instead, 
the techniques of interpretation can be applied to a general class 
of nonlinear machine learning models, no matter how they were 
trained and who trained them – even for fully trained mod-
els that are available for download like BVLC CaffeNet [28] or 
GoogleNet [67].

In that sense the presented novel technological development in 
ML allowing for interpretability is an orthogonal strand of research 
independent of new developments for improving neural network 
models and their learning algorithms. We would like to stress that 
all new developments can in this sense always profit in addition 
from interpretability.
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