
Digital Signal Processing 73 (2018) 1–15
Contents lists available at ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Methods for interpreting and understanding deep neural networks

Grégoire Montavon a,∗, Wojciech Samek b,∗, Klaus-Robert Müller a,c,d,∗∗
a Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, Berlin 10587, Germany
b Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, Berlin 10587, Germany
c Department of Brain & Cognitive Engineering, Korea University, Anam-dong 5ga, Seongbuk-gu, Seoul 136-713, South Korea
d Max Planck Institute for Informatics, Stuhlsatzenhausweg, Saarbrücken 66123, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 24 October 2017

Keywords:
Deep neural networks
Activation maximization
Sensitivity analysis
Taylor decomposition
Layer-wise relevance propagation

This paper provides an entry point to the problem of interpreting a deep neural network model and
explaining its predictions. It is based on a tutorial given at ICASSP 2017. As a tutorial paper, the set of
methods covered here is not exhaustive, but sufficiently representative to discuss a number of questions
in interpretability, technical challenges, and possible applications. The second part of the tutorial focuses
on the recently proposed layer-wise relevance propagation (LRP) technique, for which we provide theory,
recommendations, and tricks, to make most efficient use of it on real data.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Machine learning techniques such as deep neural networks
have become an indispensable tool for a wide range of applica-
tions such as image classification, speech recognition, or natural
language processing. These techniques have achieved extremely
high predictive accuracy, in many cases, on par with human per-
formance.

In practice, it is also essential to verify for a given task, that
the high measured accuracy results from the use of a proper prob-
lem representation, and not from the exploitation of artifacts in
the data [39,62,35]. Techniques for interpreting and understanding
what the model has learned have therefore become a key ingredi-
ent of a robust validation procedure [68,22,5]. Interpretability is es-
pecially important in applications such as medicine or self-driving
cars, where the reliance of the model on the correct features must
be guaranteed [17,16].

It has been a common belief, that simple models provide higher
interpretability than complex ones. Linear models or basic decision
trees still dominate in many applications for this reason. This belief
is however challenged by recent work, in which carefully designed
interpretation techniques have shed light on some of the most
complex and deepest machine learning models [60,74,5,51,55,59].

* Corresponding authors.

** Corresponding author at: Department of Electrical Engineering & Computer Sci-
ence, Technische Universität Berlin, Marchstr. 23, Berlin 10587, Germany.

E-mail addresses: gregoire.montavon@tu-berlin.de (G. Montavon),
wojciech.samek@hhi.fraunhofer.de (W. Samek), klaus-robert.mueller@tu-berlin.de
(K.-R. Müller).
https://doi.org/10.1016/j.dsp.2017.10.011
1051-2004/© 2017 The Authors. Published by Elsevier Inc. This is an open access article
Techniques of interpretation are also becoming increasingly
popular as a tool for exploration and analysis in the sciences. In
combination with deep nonlinear machine learning models, they
have been able to extract new insights from complex physical,
chemical, or biological systems [29,1,65,58].

This tutorial gives an overview of techniques for interpreting
complex machine learning models, with a focus on deep neural
networks (DNN). It starts by discussing the problem of interpret-
ing modeled concepts (e.g. predicted classes), and then moves to
the problem of explaining individual decisions made by the model.
A second part of this tutorial will look in more depth at the re-
cently proposed layer-wise relevance propagation (LRP) technique
[5]. The tutorial abstracts from the exact neural network structure
and domain of application, in order to focus on the more con-
ceptual aspects that underlie the success of these techniques in
practical applications.

In spite of the practical successes, one should keep in mind that
interpreting deep networks remains a young and emerging field
of research. There are currently numerous coexisting approaches
to interpretability. This tutorial gives a snapshot of the field at
present time and it is naturally somewhat biased towards the au-
thors view; as such we hope that it provides useful information to
the reader.

2. Preliminaries

Techniques of interpretation have been applied to a wide range
of practical problems, and various meanings have been attached to
terms such as “understanding”, “interpreting”, or “explaining”. See
[43] for a discussion. As a first step, it can be useful to clarify the
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.dsp.2017.10.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
http://creativecommons.org/licenses/by/4.0/
mailto:gregoire.montavon@tu-berlin.de
mailto:wojciech.samek@hhi.fraunhofer.de
mailto:klaus-robert.mueller@tu-berlin.de
https://doi.org/10.1016/j.dsp.2017.10.011
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2017.10.011&domain=pdf

2 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
meaning we assign to these words in this tutorial, as well as the
type of techniques that are covered.

We will focus in this tutorial on post-hoc interpretability, i.e. a
trained model is given and our goal is to understand what the
model predicts (e.g. categories) in terms what is readily inter-
pretable (e.g. the input variables) [5,55]. Post-hoc interpretability
should be contrasted to incorporating interpretability directly into
the structure of the model, as done, for example, in [54,17,76,37,
73].

Also, when using the word “understanding”, we refer to a func-
tional understanding of the model, in contrast to a lower-level
mechanistic or algorithmic understanding of it. That is, we seek
to characterize the model’s black-box behavior, without however
trying to elucidate its inner workings or shed light on its internal
representations. Furthermore, while some methods aim at reaching
a comprehensive functional understanding of the model [32,41,8],
we will focus here on interpreting the outputs of a DNN, and ex-
plaining individual predictions.

Throughout this tutorial, we will make a distinction between
interpretation and explanation, by defining these words as follows.

Definition 1. An interpretation is the mapping of an abstract con-
cept (e.g. a predicted class) into a domain that the human can
make sense of.

Examples of domains that are interpretable are images (arrays
of pixels), or texts (sequences of words). A human can look at
them and read them respectively. Examples of domains that are
not interpretable are abstract vector spaces (e.g. word embeddings
[45]), or domains composed of undocumented input features (e.g.
sequences with unknown words or symbols).

Definition 2. An explanation is the collection of features of the
interpretable domain, that have contributed for a given example to
produce a decision (e.g. classification or regression).

The features that form the explanation can be supplemented by
relevance scores indicating to what extent each feature contributes.
Practically, the explanation will be a real-valued vector of same
size as the input, where relevant features are given positive scores,
and irrelevant features are set to zero.

An explanation can be, for example, a heatmap highlighting
which pixels of the input image most strongly support the clas-
sification decision [60,34,5]. In natural language processing, expla-
nations can take the form of highlighted text [42,3].

3. Interpreting a DNN model

This section focuses on the problem of interpreting a concept
learned by a deep neural network (DNN). A DNN is a collection of
neurons organized in a sequence of multiple layers, where neurons
receive as input the neuron activations from the previous layer, and
perform a simple computation (e.g. a weighted sum of the input
followed by a nonlinear activation). The neurons of the network
jointly implement a complex nonlinear mapping from the input to
the output. This mapping is learned from the data by adapting the
weights of each neuron using a technique called error backpropa-
gation [56]. An example of a neural network is shown in Fig. 1.

The concept that must be interpreted is usually represented
by a neuron in the top layer. Top-layer neurons are abstract (i.e.
we cannot look at them), on the other hand, the input domain
of the DNN (e.g. image or text) is usually interpretable. We de-
scribe below how to build a prototype in the input domain that is
interpretable and representative of the abstract learned concept.
Building the prototype can be formulated within the activation
maximization framework.
Fig. 1. Example of a neural network composed of many interconnected neurons, and
that assigns to the input x a probability of being associated to a certain concept ωc .

3.1. Activation maximization (AM)

Activation maximization is an analysis framework that searches
for an input pattern that produces a maximum model response for
a quantity of interest [11,19,60].

Consider a DNN classifier mapping data points x to a set of
classes (ωc)c . The output neurons encode the modeled class prob-
abilities p(ωc |x). A prototype x� representative of the class ωc can
be found by optimizing:

max
x

log p(ωc|x) − λ‖x‖2.

The class probabilities modeled by the DNN are functions with a
gradient [13]. This allows for optimizing the objective by gradient
ascent. The rightmost term of the objective is an �2-norm regular-
izer that implements a preference for inputs that are close to the
origin. When applied to image classification, prototypes thus take
the form of mostly gray images, with only a few edge and color
patterns at strategic locations [60]. These prototypes, although pro-
ducing strong class response, can look unnatural.

3.2. Improving AM with an expert

In order to obtain more meaningful prototypes, the �2-regular-
izer can be replaced by a more sophisticated one [44,52] called
“expert”. The expert can be, for example, a model p(x) of the data.
This leads to the new optimization problem:

max
x

log p(ωc|x) + log p(x).

The prototype x� obtained by solving this optimization problem
will simultaneously produce strong class response and resemble
the data. By application of the Bayes’ rule, the newly defined objec-
tive can be identified, up to modeling errors and a constant term,
as the class-conditioned data density log p(x|ωc). The learned pro-
totype will thus correspond to the most likely input x for class ωc .

A possible choice for the expert is the Gaussian RBM [25]. It can
represent complex distributions and has a gradient in the input
domain. Its log-probability function can be written as:

log p(x) = ∑
j f j(x) − λ‖x‖2 + cst.,

where the terms f j(x) = log(1 + exp(w�
j x + b j)) are learned from

the data, and come in superposition to the original �2-norm regu-
larizer. When interpreting concepts such as natural images classes,
more complex density models such as convolutional RBM/DBMs
[38], or pixel-RNNs [69] can be used instead. In practice, the choice
of the expert p(x) plays an important role in determining the
appearance of the resulting prototype. The dependence of the pro-
totype on the choice of expert is illustrated in Fig. 2.

On one extreme a coarse expert (a) reduces the optimiza-
tion problem to the maximization of the class probability function
p(ωc |x). On the other extreme an overfitted expert (d) essentially
reduces the optimization problem to the maximization of the ex-
pert p(x) itself.

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 3
Fig. 2. Cartoon illustrating how the choice of expert p(x) affects the prototype x�

found by AM. The horizontal axis represents the input domain.

When using AM for the purpose of validating a DNN model, an
overfitted expert (d) must be especially avoided, as the latter could
hide interesting failure modes of the DNN model. A slightly under-
fitted expert (b), e.g. that simply favors images with natural colors,
can therefore be sufficient. On the other hand, when using AM to
gain knowledge on a concept ωc correctly predicted by the DNN,
the focus should be to prevent underfitting. Indeed, an underfit-
ted expert (b) would expose optima of p(ωc |x) potentially distant
from the data, and therefore, the prototype x� would not be truly
representative of ωc . Hence, it is important in that case to learn a
density model as close as possible to the true data distribution (c).

3.3. Performing AM in code space

In certain applications, data density models p(x) can be hard to
learn up to high accuracy, or very complex such that maximizing
them becomes difficult. An alternative class of unsupervised mod-
els are generative models. They do not provide the density function
directly, but are able to sample from it, usually via the following
two steps:

1. Sample from a simple distribution q(z) ∼ N (0, I) defined in
some abstract code space Z .

2. Apply to the sample a decoding function g :Z →X , that maps
it back to the original input domain.

One such model is the generative adversarial network [21]. It
learns a decoding function g such that the generated data distri-
bution is as hard as possible to discriminate from the true data
distribution. The decoding function g is learned in competition
with a discriminant between the generated and the true distri-
butions. The decoding function and the discriminant are typically
chosen to be multilayer neural networks.

Nguyen et al. [51] proposed to build a prototype for ωc by in-
corporating such generative model in the activation maximization
framework. The optimization problem is redefined as:

max
z∈Z log p(ωc | g(z)) − λ‖z‖2,

where the first term is a composition of the newly introduced de-
coder and the original classifier, and where the second term is an
�2-norm regularizer in the code space. Once a solution z� to the
optimization problem is found, the prototype for ωc is obtained by
decoding the solution, that is, x� = g(z�).

When the code distribution q(z) is chosen to be a normal distri-
bution, the �2 penalty −λ‖z‖2 becomes equivalent (up to a scaling
factor and a constant) to log q(z), and can therefore be under-
stood as favoring codes with high probability. However, as high
Fig. 3. Architectures supporting AM procedures and found prototypes. Black arrows
indicate the forward path and red arrows indicate the reverse path for gradient
computation. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

probability codes do not necessarily map to high density regions
in the input space, the maximization in code space described in
this section will only approximately optimize the desired quantity
log p(x|ωc).

To illustrate the qualitative differences between the methods of
Sections 3.1–3.3, we consider the problem of interpreting MNIST
classes as modeled by a three-layer DNN. We consider for this task
(1) a simple �2-norm regularizer λ‖x − x̄‖2 where x̄ denotes the
data mean for ωc , (2) a Gaussian RBM expert p(x), and (3) a gener-
ative model with a two-layer decoding function, and the �2-norm
regularizer λ‖z − z̄‖2 where z̄ denotes the code mean for ωc . Cor-
responding architectures and found prototypes are shown in Fig. 3.
Each prototype is classified with full certainty by the DNN. How-
ever, only with an expert or a decoding function, the prototypes
become sharp and realistic-looking.

3.4. From global to local analysis

When considering complex machine learning problems, proba-
bility functions p(ωc |x) and p(x) might be multimodal or strongly
elongated, so that no single prototype x� fully represents the mod-
eled concept ωc . The issue of multimodality is raised by Nguyen
et al. [53], who demonstrate in the context of image classification,
the benefit of interpreting a class ωc using multiple local proto-
types instead of a single global one.

Producing an exhaustive description of the modeled concept ωc
is however not always necessary. One might instead focus on a
particular region of the input space. For example, biomedical data
is best analyzed conditioned on a certain development stage of a
medical condition, or in relation to a given subject or organ.

An expedient way of introducing locality into the analysis
would be to add a localization term η · ‖x − x0‖2 to the AM objec-
tive, where x0 is a reference point. The parameter η controls the
amount of localization. As this parameter increases, the question
“what is a good prototype of ωc?” becomes however insubstantial, as
the prototype x� converges to x0 and thus looses its information
content.

Instead, when trying to interpret the concept ωc locally, a more
relevant question to ask is “what features of x make it representative

4 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
Fig. 4. Explanation of the prediction f (x) produced by the DNN for a given data
point x. Here, f (x) represents the evidence for the target class (“boat”) as repre-
sented by the corresponding neuron just before the softmax layer.

of the concept ωc?”. This question gives rise to a second type of
analysis, explaining DNN decisions, that will be the focus of the
rest of this tutorial.

4. Explaining DNN decisions

In this section, we ask for a given data point x, what makes
it representative of a certain concept ωc encoded at the output of
the deep neural network (DNN). The output neuron that encodes
this concept can be described as a function f (x) of the input.

A common approach to explanation is to view the data point x
as a collection of features (xi)

d
i=1, and to assign to each of these, a

score Ri determining how relevant the feature xi is for explaining
f (x). An example is given in Fig. 4.

In this example, an image is presented to the DNN, that finds
some evidence for class “boat”. The prediction is then mapped
back to the input domain. The explanation takes the form of a
heatmap, where pixels with a high associated relevance score are
shown in red. In this example, the explanation procedure right-
fully assigns relevance to the pixels representing actual boats in
the image, and ignores most of the pixels in the background. In
the next sections, we present several candidate methods for pro-
ducing these relevance scores.

4.1. Sensitivity analysis

A first approach to identify the most important input features
is sensitivity analysis [77,66,29]. It is based on the model’s lo-
cally evaluated gradient or some other local measure of variation.
A common formulation of sensitivity analysis defines relevance
scores as

Ri(x) =
(∂ f

∂xi

)2
, (1)

where the gradient is evaluated at the data point x. The most rele-
vant input features are those to which the output is most sensitive.
The technique is easy to implement for a deep neural network,
since the gradient can be computed using backpropagation [13,56].
Sensitivity analysis has been regularly used in scientific applica-
tions of machine learning such as medical diagnosis [29], ecologi-
cal modeling [20], or mutagenicity prediction [6]. More recently, it
was also used for explaining the classification of images by deep
neural networks [60].

Examples of explanations produced by sensitivity analysis when
applied to the decisions of a convolutional DNN on MNIST are
given in Fig. 5. For each digit x, the function f (x) to analyze is
chosen to be the evidence for the true class.

We can observe that heatmaps are spatially discontinuous and
scattered, and do not focus on the actual class-relevant features.
This inadequate behavior can be attributed to the nature of sensi-
tivity analysis, which relates to the local variation of the function
rather than to the function value itself. More specifically, it is easy
Fig. 5. Sensitivity analysis applied to a convolutional DNN trained on MNIST, and
resulting explanations (heatmaps) for selected digits. Red color indicates positive
relevance scores. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

to show that relevance scores computed in Equation (1) are a de-
composition of the gradient square norm:

∑d
i=1 Ri(x) = ‖∇ f (x)‖2.

Thus, sensitivity analysis does not provide an explanation of the
function value f (x), but of its local slope. In the example above,
the heatmap indicates what pixels make the digit belong more/less
to the target class rather than what makes the digit belong to that
class.

4.2. Simple Taylor decomposition

The Taylor decomposition [9,5] is a method that explains the
model’s decision by decomposing the function value f (x) as a sum
of relevance scores. The relevance scores are obtained by identifi-
cation of the terms of a first-order Taylor expansion of the function
at some root point ̃x for which f (̃x) = 0. The root point should re-
move the information in the input that causes f (x) to be positive,
e.g. the pattern in a given input image that is responsible for class
membership as modeled by the function. Taylor expansion lets us
rewrite the function as:

f (x) = ∑d
i=1 Ri(x) + O (xx�)

where the relevance scores

Ri(x) = ∂ f

∂xi

∣∣∣
x=̃x

· (xi − x̃i)

are the first-order terms, and where O (xx�) contains all higher-
order terms. Because these higher-order terms are typically non-
zero, this analysis only provides a partial explanation of f (x).

However, a special class of functions, piecewise linear and sat-
isfying the property f (t x) = t f (x) for t ≥ 0, is not subject to this
limitation. Examples of such functions used in machine learning
are homogeneous linear models, or deep ReLU networks without
biases. A simple two-dimensional function of that class is depicted
in Fig. 6 (left). It is composed of linear regions, each of them ex-
tending to the origin, and separated by hinges shown as dashed
lines. The gradient can be computed everywhere, except on the
hinges.

For these functions, we can always find a root point near the
origin, x̃ = limε→0 ε · x, that incidentally lies on the same linear
region as the data point x, and for which the second and higher-
order terms are zero.

Injecting this root point in the Taylor expansion, the function
can be rewritten as

f (x) = ∑d
i=1 Ri(x) (2)

where the relevance scores simplify to

Ri(x) = ∂ f · xi .

∂xi

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 5
Fig. 6. Function to analyze. High values of the function are shown in dark gray, low
values are in light gray, and zero is in white. Gradient and input vectors, on which
the analysis relies are shown as green and blue arrows. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Illustration of the pooling functionality: The original pixel-wise heatmap is
shown on the left. The relevance scores are then pooled in three coarse regions of
the image.

Relevance can here be understood as the product of sensitivity
(given by the locally evaluated partial derivative) and saliency
(given by the input value). That is, an input feature is relevant if it
is both present in the data, and if the model positively reacts to it,
as illustrated in Fig. 6 (right).

The ability of an explanation method to produce a decomposi-
tion of f (x), offers an interesting additional practical functionality:
If the number of input variables is too large for the explanation to
be interpretable, the decomposition can be coarsened by pooling
relevance scores over groups of features I:

RI(x) = ∑
i∈I Ri(x).

When the groups of features form a partition of the input features,
these pooled relevance scores are becoming themselves a decom-
position of the function f (x):

f (x) = ∑
I RI(x).

Fig. 7 illustrates how from a pixel-wise decomposition, one can
produce a coarser decomposition in terms of e.g. spatially mean-
ingful regions.

Lapuschkin et al. [35] used this technique in the context of
an image classification task, to determine in what proportion the
trained DNN model uses (1) the actual object and (2) its context,
to produce a decision.

While we have demonstrated the usefulness of producing a de-
composition of f (x), one still needs to test whether Taylor decom-
position as defined above assigns relevance to the correct input
features. Examples of explanations produced by simple Taylor de-
composition on a MNIST convolutional DNN are given in Fig. 8.

It can be observed that heatmaps are more complete than those
obtained by sensitivity analysis. However, they are characterized
by a large amount of negative relevance, here 38% of the total rel-
evance. This is much above the proportion of pixels that truly go
against class evidence. This undesirable effect can be attributed to
the choice of root point ̃x ≈ 0, which is too dissimilar from the ac-
tual data point x and thus does not sufficiently contextualize the
Fig. 8. Simple Taylor decomposition applied to a convolutional DNN trained on
MNIST, and resulting explanations. Red and blue colors indicate positive and neg-
ative relevance scores. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 9. Graphical depiction of the filtering mechanism. Here, only what passes
through the first two neurons of the second hidden layer is further propagated.

explanation. A nearer root point is generally preferable, but is not
guaranteed to exist. For example, in the toy example of Fig. 6, only
two out of seven linear regions have such nearer root point.

4.3. Backward propagation techniques

An alternative approach to explaining the prediction of a DNN
is to make explicit use of its graph structure, and proceed as fol-
lows: We start at the output of the network. Then, we move in
the graph in reverse direction, progressively mapping the predic-
tion onto the lower layers. The procedure stops once the input of
the network is reached. Layer-wise mappings can be engineered
for specific properties.

Layer-wise relevance propagation (LRP) [5], for example, is ap-
plicable to general network structures including DNNs and ker-
nels. The layer-wise mappings are designed to ensure a relevance
conservation property, where the share of f (x) received by each
neuron is redistributed in same amount on its predecessors. The
injection of negative relevance is controlled by hyperparameters.
The method is presented in details in Section 5 and is the focus of
the second part of this tutorial. For an earlier conserving propaga-
tion technique in the context of hierarchical networks, see [34].

Non-conserving backward propagation techniques include de-
convolution [74], and its extension guided backprop [63]. Both
have been proposed for visualizing the predictions of convolutional
DNNs. The first method relies on max-pooling layers to orient
the propagated signal on the appropriate locations in the image.
The second method relies on the ReLU activations for that pur-
pose. Unlike LRP and other conserving techniques, the visualization
produced by these methods cannot directly be interpreted as rele-
vance scores. For comparison purposes, we can however take their
absolute values and use them as relevance scores [57].

In comparison to the simple gradient-based methods of Sec-
tions 4.1 and 4.2, backward propagation techniques such as LRP
or deconvolution were shown empirically to scale better to com-
plex DNN models [57]. These techniques provide a further practical
advantage: The quantity being propagated can be filtered to only
retain what passes through certain neurons or feature maps. The
filtering functionality is depicted in Fig. 9.

6 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
Table 1
Properties of various techniques for explaining DNN predictions. (�)
pools variations of f . (†) technically applicable, but no clear inter-
pretation of the result.

pooling filtering

sensitivity analysis [60] �(�)

simple Taylor decomposition [5] �
deconvolution [74] (†) �
guided backprop [63] (†) �
layer-wise relevance propagation [5] � �

Fig. 10. LRP applied to a convolutional DNN trained on MNIST, and resulting expla-
nations for selected digits. Red and blue colors indicate positive and negative rele-
vance scores respectively. Heatmaps are shown next to those produced by guided
backprop. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Filtering can be useful, for example, in the context of multi-
task learning, where some hidden neurons are specific to a given
task and other neurons are shared. Filtering one or the other set
of neurons allows for forming separate explanations for (1) what
is specifically relevant to the given task, and (2) what is commonly
relevant to all tasks. More generally, filtering can be used to cap-
ture multiple components of an explanation, that would otherwise
be entangled. A systematic comparison of methods for explaining
DNNs is given in Table 1.

5. Layer-wise relevance propagation (LRP)

LRP [5] is a backward propagation technique, specifically de-
signed for explanation. LRP was found to be broadly applicable
[35,3,65,2], and to have excellent benchmark performance [57]. The
LRP technique is rooted in a conservation principle, where each
neuron receives a share of the network output, and redistributes it
to its predecessors in equal amount, until the input variables are
reached [5,34]. LRP is furthermore embeddable in the theoretical
framework of deep Taylor decomposition [46].

Example of explanations produced by LRP are given in Fig. 10.
Most of the digit contours are identified as relevant, and a few pix-
els such as the broken upper-loop of the last digit “8” are identi-
fied as negatively relevant. In comparison, non-conserving methods
such as guided backprop cannot identify these negatively relevant
areas. LRP heatmaps are also easier to interpret than those ob-
tained with the gradient-based methods of Sections 4.1 and 4.2.

A high-level graphical depiction of the LRP procedure applied
to a deep neural network is given in Fig. 11.

In the first phase, a standard forward pass is applied to the net-
work and the activations at each layer are collected. In the second
phase, the score obtained at the output of the network is propa-
gated backwards in the network, using a set of propagation rules
that we provide in Section 5.1. In this layered graph structure, the
relevance conservation property can be formulated as follows: Let
j and k be indices for neurons of two successive layers. Let Rk be
the relevance of neuron k for the prediction f (x). We define R j←k
as the share of Rk that is redistributed to neuron j in the lower
layer. The conservation property for this neuron imposes
Fig. 11. Diagram of the LRP procedure (here after three steps of redistribution). Red
arrows indicate the relevance propagation flow. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this arti-
cle.)

∑
j R j←k = Rk.

Likewise, neurons in the lower layer aggregate all relevance coming
from the neurons from the higher layer:

R j = ∑
k R j←k

These two equations, when combined, also ensure a relevance con-
servation property between layers (proof:

∑
j R j = ∑

j

∑
k R j←k =∑

k

∑
j R j←k = ∑

k Rk). Conservation of relevance in the redistri-
bution process also holds globally, so that we can write the chain
of equalities

∑d
i=1 Ri = · · · = ∑

j R j = ∑
k Rk = · · · = f (x),

where the leftmost and rightmost terms highlight the fact that the
method computes a decomposition of f (x) in terms of input vari-
ables.

5.1. LRP propagation rules

Technically, this conservation property of LRP must be imple-
mented by a specific set of propagation rules. Let the neurons of
the DNN be described by the equation

ak = σ
(∑

j a j w jk + bk
)
,

with ak the neuron activation, (a j) j the activations from the pre-
vious layer, and w jk, bk the weight and bias parameters of the
neuron. The function σ is a positive and monotonically increas-
ing activation function.

One propagation rule that is locally conservative and that was
shown to work well in practice is the αβ-rule [5] given by:

R j =
∑

k

(
α

a j w+
jk∑

j a j w+
jk

− β
a j w−

jk∑
j a j w−

jk

)
Rk, (3)

where each term of the sum corresponds to a relevance message
R j←k , where ()+ and ()− denote the positive and negative parts
respectively, and where the parameters α and β are chosen subject
to the constraints α − β = 1 and β ≥ 0. To avoid divisions by zero,
small stabilizing terms can be introduced when necessary. The rule
can be rewritten as

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 7
Fig. 12. Graphical depiction of the relevance redistribution process for one neuron,
with different parameters α and β . Positive relevance is shown in red. Negative
relevance is shown in blue. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 13. LRP explanations when choosing different LRP parameters α and β . Positive
and negative relevance are shown in red and blue respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

R j =
∑

k

a j w+
jk∑

j a j w+
jk

R∧
k +

∑
k

a j w−
jk∑

j a j w−
jk

R∨
k ,

where R∧
k = αRk and R∨

k = −βRk . It can now be interpreted as
follows:

Relevance R∧
k should be redistributed to the lower-layer neurons

(a j) j in proportion to their excitatory effect on ak. “Counter-rele-
vance” R∨

k should be redistributed to the lower-layer neurons (a j) j
in proportion to their inhibitory effect on ak.

Different combinations of parameters α, β were shown to mod-
ulate the qualitative behavior of the resulting explanation. As a
naming convention, we denote, for example, by LRP-α2β1, the fact
of having chosen the parameters α = 2 and β = 1 for this rule.

Fig. 12 depicts the redistribution process for a neuron with pos-
itive inputs and weights (w jk) j = (1, 0, −1). The higher α and β ,
the more positive and negative relevance are being created in the
propagation phase.

Examples of explanations obtained with different values of α
and β are given in Fig. 13 for MNIST digits predicted by a convo-
lutional DNN. Unless stated otherwise, we use in all experiments
the same parameters α and β for each hidden layer, except for the
first layer, where we use a pixel-specific rule given later in Eq. (8).

When α = 1, the heatmaps contain only positive relevance, and
the latter is spread along the contour of the digits in a fairly uni-
form manner. When choosing α = 2, some regions in the images
become negatively relevant (e.g. the broken upper-loop of the last
digit “8”), but the negative relevance still amounts to only 5% of
the total relevance. When setting the higher value α = 3, negative
relevance starts to appear in a seemingly random fashion, with the
share of total relevance surging to 30%. For this simple example, a
good choice of propagation rule is LRP-α2β1.

On the deeper BVLC CaffeNet [28] for image recognition,
LRP-α2β1 was also shown to work well [5]. For the very deep
Fig. 14. Diagram of the relevance neuron, its analysis, and the relevance propagation
resulting from the analysis. The root search segment is shown in blue. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

GoogleNet [67], however, LRP-α1β0 was found to be more stable
[46].

When choosing the parameters α = 1 and β = 0, the propaga-
tion rule reduces to the simpler rule:

R j =
∑

k

a j w+
jk∑

j a j w+
jk

Rk. (4)

This simpler rule allows for an interpretation of LRP as a deep Tay-
lor decomposition [46], that we present below. The same simple
rule was also used later by Zhang et al. [75] as part of an explana-
tion method called excitation backprop.

5.2. LRP and deep Taylor decomposition

In this section, we show for deep ReLU networks a connection
between LRP-α1β0 and Taylor decomposition. We show in particu-
lar that when neurons are defined as

ak = max
(
0,

∑
j a j w jk + bk

)
with bk ≤ 0,

the application of LRP-α1β0 at a given layer can be seen as com-
puting a Taylor decomposition of the relevance at that layer onto
the lower layer. The name “deep Taylor decomposition” then arises
from the iterative application of Taylor decomposition from the
top layer down to the input layer. The analysis relies on a special
structure of the relevance scores Rk at each layer, which have to
be the product of the corresponding neuron activations and posi-
tive constant terms. This assumption is necessary in order to apply
the Taylor decomposition framework to these neurons. Similarly,
the Taylor decomposition procedure must also ensure that result-
ing relevances in the lower layer have the same product structure,
so that relevance can be further propagated backwards.

Let us assume that the relevance for the neuron k can be writ-
ten as Rk = akck , a product of the neuron activation ak and a term
ck that is constant and positive. These two properties allow us to
construct a “relevance neuron”

Rk = max
(
0,

∑
j a j w ′

jk + b′
k

)
, (5)

with parameters w ′
jk = w jkck and b′

k = bkck . The relevance neuron
Rk is shown graphically in Fig. 14(a), and as a function of (a j) j
in Fig. 14(b). The gradient of grays depicts the neuron’s linear ac-
tivation domain, and the dashed line indicates the hinge of that
function.

We now would like to propagate the relevance to the lower
layer. For this, we perform a Taylor decomposition of Rk . Because
the relevance neuron is linear on its activated domain, one can
always take a root point at the limit of zero activation. Thus, the
Taylor expansion at this root point contains only first-order terms
and is given by

Rk =
∑

j

∂ Rk

∂a j

∣∣∣
(̃a j) j

· (a j − ã j)

︸ ︷︷ ︸
R j←k

. (6)

8 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
We search for the nearest root point (̃a j) j of Rk on the segment
S = [(a j1w ′

jk≤0) j, (a j) j]. The search segment is visualized as a blue
line in Fig. 14(b). This search strategy can be interpreted as slowly
removing the excitatory inputs until the relevance neuron becomes
deactivated. Injecting the found root point (̃a j) j in Equation (6),
one gets the following closed-form expression:

R j←k = a j w+
jk∑

j a j w+
jk

Rk. (7)

The resulting propagation of Rk on the input neurons is illustrated
in Fig. 14(c). Summing R j←k over all neurons k to which neuron j
contributes yields exactly the LRP-α1β0 propagation rule of Equa-
tion (4).

We now would like to verify that this relevance redistribution
procedure can be repeated one layer below. For this, we inspect
the structure of R j given in Equation (4), and observe that it can be
written as a product R j = a jc j , where a j is the neuron activation
and

c j =
∑

k

w+
jk∑

j a j w+
jk

Rk

=
∑

k

w+
jk

max
(
0,

∑
j a j w jk + bk

)
∑

j a j w+
jk

ck

is positive and also approximately constant. The latter property
arises from the observation that the dependence of c j on the ac-
tivation a j is only very indirect (diluted by two nested sums), and
that the other terms w jk, w+

jk, bk, ck are constant or approximately
constant.

The positivity and near-constancy of c j imply that similar rele-
vance neuron to the one of Equation (5) can be built for neuron j,
for the purpose of redistributing relevance on the layer before. The
decomposition process can therefore be repeated in the lower lay-
ers, until the first layer of the neural network is reached, thus,
performing a deep Taylor decomposition [46].

5.3. Handling special layers

In the section above, we have presented the general deep Taylor
decomposition principle underlying the propagation of relevance
in a sequence of ReLU layers. To ensure a broader applicability for
LRP, other layer types need to be considered:

Input layer. The input layer is special in the sense that its input
domain differs from the hidden layers. Deep Taylor decomposition
adapts to the new input domain by modifying the root search di-
rection S to remain inside of it [46]. For example, when the input
domain is defined by the box constraints li ≤ xi ≤ hi (e.g. pixel
values restricted between black and white), an appropriate search
direction S will point to the corner of the box opposite to the di-
rection of the weight vector. This results in the new propagation
rule:

Ri =
∑

j

xi wij − li w+
i j − hi w−

i j∑
i xi wij − li w+

i j − hi w−
i j

R j. (8)

For a derivation and further propagation rules, see [46]. More com-
plex rules that not only take into consideration the input domain
but also the statistics of the data within that domain were recently
proposed [30].

Pooling layer. In order to provide spatial or temporal invariance,
neural networks often incorporate pooling layers. The �p -pooling
layer has its output defined as
ak = p
√∑

j ap
j ,

where (a j) j are the activations inside the pool. A possible propa-
gation rule for this layer is

R j←k = a j∑
j a j

Rk, (9)

i.e. redistribution in proportion to the neuron activations. This rule
selects the most relevant neurons in the pool, while also ensuring
a continuous transition in the space of pooled activations. This rule
also has a deep Taylor interpretation for the case p = 1: One first
needs to observe that the pooling operation over positive activa-
tions is equivalent to a simple ReLU neuron with weights w jk = 1,
and then observe that Eq. (9) coincides with Eq. (7) for that par-
ticular choice of weights.

Other layers. In practical applications, a variety of layers and ar-
chitectures are used to handle specific types of signals or to reach
maximum performance. Examples are LSTMs [26], normalization
layers [27,33], or improved element-wise nonlinearities [31]. Al-
though some propagation rules have been shown to work well in
practice [5,12,4], it is still an open question whether the deep Tay-
lor decomposition framework can also be extended to these layers.

6. Recommendations and tricks

Machine learning methods are often described in papers at an
abstract level, for maximum generality. However, a good choice of
hyperparameters is usually necessary to make them work well on
real-world problems, and tricks are often used to make most effi-
cient use of these methods and extend their capabilities [10,25,47].
Likewise, techniques of interpretation often come with their own
set of recommendations and tricks. While this section is mainly fo-
cused on LRP, part of the discussion also applies to interpretation
techniques in general.

6.1. Structuring the DNN for maximum explainability

We consider here a standard and generally successful class of
architectures: DNNs with convolution layers and ReLU neurons. We
then ask what specific architectures within that class, can be ex-
pected to work optimally with explanation techniques such as LRP.
Our first recommendation relates to the global layer-wise structure
of the network:

Use as few fully-connected layers as needed to be accurate, and train
these layers with dropout.

A reduced number of fully-connected layers avoids that the rele-
vance, when redistributed backwards, looses its connection to the
concept being predicted. Training these layers with dropout [64]
helps to better align the filters with the actual features, and further
encourages the relevance to be redistributed only to the limited set
of task-relevant neurons. The second recommendation focuses on
spatial or temporal pooling:

Use sum-pooling layers abundantly, and prefer them to other types of
pooling layers.

As discussed in Section 5.3, sum-pooling layers are directly
embeddable in the deep Taylor decomposition framework. Sum-
pooling layers also admit a unique root point in the space of
positive activations [46], which allows for an unambiguous choice
of LRP redistribution rule Eq. (9). A global sum-pooling layer at
the top of a DNN was further advocated by Zhou et al. [76] as a
way of spatially localizing class-relevant information. A third rec-
ommendation concerns the linear layers in the DNN architecture:

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 9
In the linear layers (convolution and fully-connected), constrain bi-
ases to be zero or negative.

The use of negative biases strengthens the interpretation of LRP
as a deep Taylor decomposition. A second more intuitive argument
in favor of negative biases is that they further sparsify the network
activations, and in turn, encourage relevance to be redistributed on
a limited number of neurons.

6.2. Choosing the LRP rules for explanation

In presence of a deep neural network that follows the recom-
mendations above, or a more general successfully trained DNN, a
first set of propagation rules to be tried are the ones derived from
deep Taylor decomposition Eqs. (4), (8), (9). These rules exhibit a
stable behavior and are also well-understood theoretically.

As a default choice, use the deep Taylor LRP rules.

Eq. (4) in particular, corresponds to the LRP-α1β0 rule and ap-
plies to the hidden layers. In presence of predictive uncertainty, a
certain number of input variables might be in contradiction with
the prediction, and the concept of “negative relevance” must there-
fore be introduced. Negative relevance can be injected into the
explanation in a controlled manner by setting the hyperparame-
ters α, β to more appropriate values.

If negative relevance is needed, or the heatmaps are too diffuse, re-
place the rule LRP-α1β0 by LRP-α2β1 in the hidden layers.

The LRP-α1β0 and LRP-α2β1 rules were shown to work well on
image classification [46], but there is a potentially much larger set
of rules that we can choose from. For example, the “ε-rule” [5] was
applied successfully to text categorization [3,4]. To choose the most
appropriate rule among the set of possible ones, one can define a
heatmap quality criterion, and select the LRP rules accordingly.

If the heatmaps are still unsatisfactory (or if it is unclear whether they
are), consider a larger set of propagation rules, and use the techniques
of Section 7 to select the best one.

This places all the weight on the heatmap quality criterion, but
can lead in principle to better choices of hyperparameters, poten-
tially different for each layer.

6.3. Tricks for implementing LRP

Although the LRP rules are expressed in this paper for indi-
vidual neurons, they can be implemented easily and efficiently on
large fully-connected or convolution layers. Let us consider, for ex-
ample, the LRP-α1β0 propagation rule of Equation (4):

R j = a j

∑
k

w+
jk∑

j a j w+
jk

Rk,

where we have for convenience moved the neuron activation a j
outside the sum. This rule can be written as four elementary com-
putations, all of which can also expressed in vector form:

element-wise vector form

zk ← ∑
j a j w+

jk z ← W �+ · a (10)

sk ← Rk/zk s ← R � z (11)

c j ← ∑
k w+

jksk c ← W+ · s (12)

R j ← a jc j R ← a � c (13)
In the vector form computations, � and � denote the element-
wise division and multiplication. The variable W denotes the
weight matrix connecting the neurons of the two consecutive lay-
ers, and W+ is the matrix retaining only the positive weights of W
and setting remaining weights to zero. This vector form is useful
to implement LRP for fully connected layers.

In convolution layers, the matrix-vector multiplications of Equa-
tions (10) and (12) can be more efficiently implemented by bor-
rowing the forward and backward methods used for forward
activation and gradient propagation. These methods are readily
available in many neural network libraries and are typically highly
optimized. Based on these high-level primitives, LRP can be imple-
mented by the following sequence of operations:

def lrp(layer,a,R):

clone = layer.clone()
clone.W = maximum(0,layer.W)
clone.B = 0

z = clone.forward(a)
s = R / z
c = clone.backward(s)

return a * c

The function lrp receives as arguments the layer through
which the relevance should be propagated, the activations “a” at
the layer input, and the relevance scores “R” at the layer output.
The function returns the redistributed relevance at the layer input.

If correctly implemented, and assuming that the convolutions
and matrix multiplications are where most of the computation
time is spent, the computational complexity of LRP (including for-
ward pass) scales linearly with the forward pass, with some con-
stant factor: ×3 for LRP-α1β0, ×5 for general parameters α and β ,
and ×7 for the rule of Equation (8) specific to pixel intensities.

Sample code for these propagation rules and for the com-
plete layer-wise propagation procedure is provided at http :/ /
heatmapping .org /tutorial. A similar modular approach was also
used by Zhang et al. [75] to implement the excitation backprop
method. In addition, an LRP toolbox [36] was developed, that can
be used to apply LRP to state-of-the-art convolutional DNNs.

6.4. Translation trick for denoising heatmaps

It is sometimes observed that, for classifiers that are not op-
timally trained or structured, heatmaps have unaesthetic features.
This can be caused, for example, by the presence of noisy first-
layer filters, or a large stride parameter in the first convolution
layer. These effects can be mitigated by considering the explana-
tion not of a single input image, but of multiple slightly translated
versions of the image. The heatmaps for these translated versions
are then recombined by applying to them the inverse translation
operation and averaging them up. In mathematical terms, the im-
proved heatmap is given by:

R�(x) = 1

|T |
∑
τ∈T

τ−1(R(τ (x)))

where τ , τ−1 denote the translation and its inverse, and T is the
set of all translations of a few pixels. Note that this translation trick
preserves the spatial resolution of the heatmap and is therefore
not the same as simple heatmap blurring. This trick was used, for
example, by Arbabzadah et al. [2] to reduce the stride artifact of

http://heatmapping.org/tutorial
http://heatmapping.org/tutorial

10 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
Fig. 15. Heatmaps obtained by explaining a fully-connected DNN on MNIST with
LRP-α2β1, and denoised heatmaps resulting from applying translations.

the first convolution layer when explaining facial expression data
with LRP.

If choosing too few translations, the denoising effect is limited.
If choosing too many translations, the model might receive un-
expected inputs, and can consequently produce erratic decisions.
Additionally, too much evidence will be assigned to examples for
which the prediction is more translation invariant.

The effect of the translation trick on a fully-connected DNN is
shown in Fig. 15. The original heatmap is noisy. Adding transla-
tions up to two pixels in all directions (5 × 5 translations) already
produces much cleaner heatmaps. Adding more translations fur-
ther denoises the heatmaps but also changes the amount of evi-
dence attributed to each input image, e.g. the heatmap for the first
digit “8” becomes weaker.

The general idea of using translations for denoising is also ap-
plicable to other interpretation techniques: For example, the tech-
niques of Section 3 can be enhanced by forcing the class prototype
x� to produce consistently high responses under small translations.
Mordvintsev et al. [50] used a similar trick as part of the inception-
ism technique for visualizing DNNs.

6.5. Sliding window explanations for large images

In applications such as medical imaging or scene parsing, the
images to be processed are typically larger than what the neural
network has been trained on and receives as input. Let X be this
large image. The LRP procedure can be extended for this scenario
by applying a sliding window strategy, where the neural network
is moved through the whole image, and where heatmaps produced
at various locations must then be combined into a single large
heatmap. Technically, we define the quantity to explain as:

g(X) =
∑
s∈S

f (X[s]︸︷︷︸
x

)

where X[s] extracts a patch from the image X at location s, and
S is the set of all locations in that image. Pixels then receive rel-
evance from all patches to which they belong and in which they
contribute to the function value f (x). This technique is illustrated
in Fig. 16.

When f is a convolutional network, a more direct approach
is to add a global top-level pooling layer to the network (after
training), and feed the whole image X to it. This direct approach
can provide a computational gain compared to the sliding win-
dow method. However, it is not strictly equivalent and can produce
unreliable heatmaps, e.g. when the network uses border-padded
convolutions. In doubt, it is preferable to use the sliding window
approach.
Fig. 16. Highlighting in a large image pixels that are relevant for the CIFAR-10 class
“horse”, using the sliding window technique.

Fig. 17. Transferring the explanation parameters from a known domain (MNIST), to
a potentially less known target domain.

7. Evaluating explanation quality

For general tasks, e.g. in the sciences, it can be difficult to deter-
mine objectively whether an explanation technique is good or not,
as the concept predicted by the DNN may only be interpretable by
an expert. Here, we present some strategies to systematically and
objectively assess the quality of explanations. Section 7.1 discusses
how a simple related task can serve as a proxy for that purpose.
Sections 7.2 and 7.3 discuss how to perform such quality assesse-
ment by looking analytically at the explanation function and its
relation to the prediction.

7.1. Transfer with a simple task

Consider the case where the task of interest is related to a
known simple task (e.g. same input domain, same structure of the
prediction, and similar neural network architecture needed to solve
it). On the simple task, it is usually easier to determine whether an
explanation is good or bad, as the task typically involves daily-life
concepts for which we know what are the important features. The
simple task can therefore be used as a proxy for the task of inter-
est, in order to evaluate explanation quality.

This idea is illustrated in Fig. 17, in the context of selecting
the most appropriate parameters of an explanation technique. In
this example, we would like to explain the prediction of a DNN
trained on a handwritten characters dataset [70]. We first find the
parameters that best explain the prediction of a DNN trained on
the simple and related MNIST data. Then, the found parameters
are applied to the original problem.

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 11
Fig. 18. Explaining max(x1, x2). Function values are represented as a contour plot,
with dark regions corresponding to high values. Relevance scores are represented
as a vector field, where horizontal and vertical components are the relevance of
respective input variables.

We can observe that the heatmaps look similar across domains,
with a similar placement of relevance around the handwriting
strokes and a similar share of negative relevance. In the target
domain, LRP identifies important features such as the upper tri-
angle for the character “A”, and the two vertically stacked rounded
strokes for the character “B”. It also identifies as negatively rele-
vant a defect in the second character “B”, where the vertical bar is
too distant.

However, when a simple related task is not available, it be-
comes essential to be able to define at a more abstract level what
are the characteristics of a good explanation, and to be able to test
for these characteristics quantitatively. We present in the following
two important properties of an explanation, along with possible
evaluation metrics.

7.2. Explanation continuity

A desirable property of an explanation technique is that it
produces a continuous explanation function. Here, we implic-
itly assume that the prediction function f (x) is also continu-
ous. We would like to ensure in particular the following behav-
ior:

If two data points are nearly equivalent, then the explanations of their
predictions should also be nearly equivalent.

Explanation continuity (or lack of it) can be quantified by look-
ing for the strongest variation of the explanation R(x) in the input
domain:

max
x �=x′

‖R(x) − R(x′)‖1

‖x − x′‖2
.

The problem of explanation continuity is first illustrated in Fig. 18
for the simple function f (x) = max(x1, x2) in R2+ , here imple-
mented by the two-layer ReLU network

f (x) = max
(
0 ,0.5 max(0, x1 − x2)

+ 0.5 max(0, x2 − x1)

+ 0.5 max(0, x1 + x2)
)
.

It can be observed that despite the continuity of the prediction
function, the explanations offered by sensitivity analysis and sim-
ple Taylor decomposition are discontinuous on the line x1 = x2.
Here, only LRP produces a smooth transition.

Techniques that rely on the function’s gradient, such as sen-
sitivity analysis or simple Taylor decomposition, are also strongly
exposed to derivative noise [61] that characterizes complex ma-
chine learning models. More specifically, they are subject to the
problem of shattered gradients [7,49] occurring in deep ReLU net-
works: The number of piecewise-linear regions tends to grow very
Fig. 19. Classification “2” by a DNN, explained by different methods, as we move
a handwritten digit from left to right. The function value is shown in black and
relevance scores (pooled in four quadrants) are shown in colors from pink to orange.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

quickly with depth, and thus cause the gradient to become strongly
discontinuous and loose its information content.

Fig. 19 looks at the continuity of relevance scores for sensitiv-
ity analysis and LRP-α2β1, when applying them to a convolutional
DNN trained on MNIST. We move in the input space by slowly
translating a MNIST digit from left to right, and keep track of the
function value and the relevance scores of the two explanation
methods.

Although the function f (x) is continuous, relevance scores pro-
duced by sensitivity analysis are strongly varying. Here again, only
LRP produces continuous explanations.

7.3. Explanation selectivity

Another desirable property of an explanation is that it redis-
tributes relevance to variables that have the strongest impact on
the function value f (x). Bach et al. [5] and Samek et al. [57]
proposed to quantify selectivity by measuring how fast f (x) goes
down when removing features with highest relevance scores.

The method was introduced for image data under the name
“pixel-flipping” [5,57], and was also adapted to text data, where
words selected for removal have their word embeddings set to
zero [3]. The method works as follows:

Sort features from most to least relevant (R1 ≥ · · · ≥ Rd)

for i from 1 to d:

• record the current function value f (x)

• remove the ith most relevant feature (x ← x − {xi})

make a plot with all recorded function values, and return
the area under the curve (AUC) for that plot.

A sharp drop of function’s value, summarized by a low AUC score
indicates that the correct features have been identified as relevant.
Plots and AUC results can be averaged over a large number of ex-
amples in the dataset.

Fig. 20 illustrates the procedure on the same DNN as in Fig. 19.
At each iteration, a patch of size 4 × 4 corresponding to the re-
gion with highest relevance is set to black. The plot keeps track of
the function value f (x) as the features are being progressively re-
moved and computes an average over a large number of examples.
The plot indicates that LRP and guided backprop are more selec-
tive than sensitivity analysis and simple Taylor decomposition, and

12 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
Fig. 20. Illustration of the “pixel-flipping” procedure. At each step, the next most
relevant region according to the heatmap is removed (by setting it to black), and
the function value f (x) is recorded.

that LRP-α2β1 scores the best among all methods. This success can
be attributed to the ability of LRP to model negative evidence. This
negative evidence is preserved during the whole pixel-flipping pro-
cedure, thus further lowering the function value f (x). We refer to
Samek et al. [57] for a more comprehensive comparison between
different explanation methods.

The choice of a patch instead of a pixel as a unit of removal
lets the analysis focus on removing actual content of the image,
and avoids introducing pixel artifacts. For natural images, various
patch replacement strategies (e.g. gray patch, random noise, Gaus-
sian blur) as well as various patch sizes (up to 19 ×19 pixels) have
been used in practice [57]. For text categorization, Arras et al. [3]
choose the word as a unit of feature removal, and remove words
by setting their associated word2vec vector to zero.

It is important to note that the result of the analysis depends to
some extent on the feature removal process. As mentioned above,
various feature removal strategies can be used, but a general rule is
that it should keep as much as possible the data point being mod-
ified on the data manifold. Indeed, this guarantees that the DNN
continues to work reliably through the whole feature removal pro-
cedure. This in turn makes the analysis less subject to uncontrolled
factors of variation.

8. Applications

Potential applications of explanation techniques are vast and
include as diverse domains as extraction of domain knowledge,
computer-assisted decisions, data filtering, or compliance. We fo-
cus in this section on two types of applications: validation of a
trained model, and analysis of scientific data.

8.1. Model validation

Model validation is usually achieved by measuring the error on
some validation set disjoint from the training data. While provid-
ing a simple way to evaluate a machine learning model in practice,
the validation error is only a proxy for the true error, as the val-
idation set might differ statistically from the true distribution. A
human inspection of the model rendered interpretable can thus be
a good complement to the basic validation procedure. We present
two recent examples showing how explainability allows to better
validate a machine learning model by pointing out at some unsus-
pected qualitative properties of it.

Arras et al. [3] considered a document classification task on the
20-Newsgroup dataset, and compared the explanations of a con-
Fig. 21. Examples taken from the literature of model validation via explanation. (a)
Explanation of the concept “sci.space” by two text classifiers. (b) Unexpected
use of copyright tags by the Fisher vector model for predicting the class “horse”.

volutional neural network (CNN) trained on word2vec inputs to
the explanations of a support vector machine (SVM) trained on
bag-of-words (BoW) document representations. A LRP procedure
was applied to each model to produce the explanations. The au-
thors observed that, although both models produce a similar test
error, the CNN model assigns most relevance to a small number of
keywords, whereas the SVM classifier relies on word count regular-
ities. Fig. 21(a) displays explanations for an example of the target
class sci.space.

Lapuschkin et al. [35] compared the decisions taken by convo-
lutional DNN transferred from ImageNet, and a Fisher vector clas-
sifier on PASCAL VOC 2012 images. Although both models reach
similar classification accuracy on the category “horse”, the authors
observed that they use different strategies to classify images of
that category. A LRP procedure was applied to explain the predic-
tions of both models. Explanations for a given image are shown in
Fig. 21(b). The deep neural network looks at the contour of the ac-
tual horse, whereas the Fisher vector model (of more rudimentary
structure and trained with less data) relies mostly on a copyright
tag, that happens to be present on many horse images. Removing
the copyright tag in the test images would consequently signifi-
cantly decrease the measured accuracy of the Fisher vector model
but leave the deep neural network predictions unaffected.

Once a weakness of the model has been identified by say LRP,
various countermeasures can be taken to improve the model. For
example, the reliance of the model on a data artifact (e.g. a copy-
right tag) can be mitigated by removing it (or injecting similar
artifact in other classes), and retraining the model. A model that
decides based on too many input variables can be retrained with a
sparsity penalty. The rich feedback provided by explanation allows
in principle to explore the space of DNN models in a more guided
manner than a validation procedure based only on classification
error.

8.2. Analysis of scientific data

Beyond model validation, techniques of explanation can also be
applied to shed light on scientific problems where human intuition
and domain knowledge is often limited. Simple statistical tests and
linear models have proved useful to identify correlations between
different variables of a system, however, the measured correlations
typically remain weak due to the inability of these models to cap-
ture the underlying complexity and nonlinearity of the studied
problem. For a long time, the computational scientist would face

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 13
Fig. 22. Overview of several applications of machine learning explanation tech-
niques in the sciences. (a) Molecular response maps for quantum chemistry, (b)
EEG heatmaps for neuroimaging, (c) extracting relevant information from gene se-
quences, (d) analysis of facial appearance.

a tradeoff between interpretability and predictive power, where
linear models would sometimes be preferred to nonlinear mod-
els despite their typically lower predictive power. We give below
a selection of recent works in various fields of research, that com-
bine deep neural networks and explanation techniques to extract
insight on the studied scientific problems.

In the domain of atomistic simulations, powerful machine
learning models have been produced to link molecular structure
to electronic properties [48,23,58,18]. These models have been
trained in a data-driven manner, without simulated physics in-
volved into the prediction. In particular, Schütt et al. [58] proposed
a deep tensor neural network model that incorporates sufficient
structure and representational power to simultaneously achieve
high predictive power and explainability. Using a test-charge per-
turbation analysis (a variant of sensitivity analysis where one
measures the effect on the neural network output of inserting
a charge at a given location), three-dimensional response maps
were produced that highlight for each individual molecule spatial
structures that were the most relevant for explaining the mod-
eled structure-property relationship. Example of response maps
are given in Fig. 22(a) for various molecules.

Sturm et al. [65] showed that explanation techniques can also
be applied to EEG brain recording data. Because the input EEG
pattern can take different forms (due to different users, environ-
ments, or calibration of the acquisition device), it is important to
produce an individual explanation that adapts to these parame-
ters. After training a neural network to map EEG patterns to a
set of movements imagined by the user (“right hand” and “foot”),
a LRP decomposition of that prediction could be achieved in the
EEG input domain (a spatiotemporal signal capturing the electrode
measurements at various positions on the skull and at multiple
time steps), and pooled temporally to produce EEG heatmaps re-
vealing from which part of the brain the decision for “right hand”
or “foot” originates. An interesting property of decomposition tech-
niques in this context is that temporally pooling preserves the total
function value, and thus, still corresponds to a decomposition of
the prediction. Examples of these individual EEG brain maps are
given in Fig. 22(b). For classical linear explanation of neural ac-
tivation patterns in cognitive brain science experiments or Brain
Computer Interfacing, see [15,40,14,24].

Deep neural networks have also been proposed to make sense
of the human genome. Alipanahi et al. [1] trained a convolutional
neural network to map the DNA sequence to protein binding sites.
In a second step, they asked what are the nucleotides of that se-
quence that are the most relevant for explaining the presence of
these binding sites. For this, they used a perturbation-based anal-
ysis, similar to the sensitivity analysis described in Section 4.1,
where the relevance score of each nucleotide is measured based on
the effect of mutating it on the neural network prediction. Other
measures of feature importance for individual gene sequences have
been proposed [71,72]. They apply to a broad class of nonlinear
models, from deep networks to weighted degree kernel classifiers.
Examples of heatmaps representing relevant genes for various se-
quences and prediction outcomes are shown in Fig. 22(c).

Explanation techniques also have a potential application in the
analysis of face images. These images may reveal a wide range of
information about the person’s identity, emotional state, or health.
However, interpreting them directly in terms of actual features of
the input image can be difficult. Arbabzadah et al. [2] applied a LRP
technique to identify which pixels in a given image are responsible
for explaining, for example, the age and gender attributes. Example
of pixel-wise explanations are shown in Fig. 22(d).

9. Conclusion

Building transparent machine learning systems is a convergent
approach to both extracting novel domain knowledge and perform-
ing model validation. As machine learning is increasingly used in
real-world decision processes, the necessity for transparent ma-
chine learning will continue to grow. Examples that illustrate the
limitations of black-box methods were mentioned in Section 8.1.

This tutorial has covered two key directions for improving ma-
chine learning transparency: interpreting the concepts learned by a
model by building prototypes, and explaining the model’s decisions
by identifying the relevant input variables. The discussion mainly
abstracted from the exact choice of deep neural network, train-
ing procedure, or application domain. Instead, we have focused on
the more conceptual developments, and connected them to recent
practical successes reported in the literature.

In particular we have discussed the effect of linking prototypes
to the data, via a data density function or a generative model. We
have described the crucial difference between sensitivity analysis
and decomposition in terms of what these analyses seek to ex-
plain. Finally, we have outlined the benefit in terms of robustness,
of treating the explanation problem with graph propagation tech-
niques rather than with standard analysis techniques.

This tutorial has focused on post-hoc interpretability, where
we do not have full control over the model’s structure. Instead,
the techniques of interpretation can be applied to a general class
of nonlinear machine learning models, no matter how they were
trained and who trained them – even for fully trained mod-
els that are available for download like BVLC CaffeNet [28] or
GoogleNet [67].

In that sense the presented novel technological development in
ML allowing for interpretability is an orthogonal strand of research
independent of new developments for improving neural network
models and their learning algorithms. We would like to stress that
all new developments can in this sense always profit in addition
from interpretability.

Acknowledgments

We gratefully acknowledge discussions and comments on the
manuscript by our colleagues Sebastian Lapuschkin, and Alexan-

14 G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15
der Binder. This work was supported by the Brain Korea 21 Plus
Program through the National Research Foundation of Korea; the
Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea Government [No. 2017-0-00451];
the Deutsche Forschungsgemeinschaft (DFG) [grant MU 987/17-1];
and the German Ministry for Education and Research as Berlin Big
Data Center (BBDC) [01IS14013A]. This publication only reflects the
authors views. Funding agencies are not liable for any use that may
be made of the information contained herein.

References

[1] B. Alipanahi, A. Delong, M.T. Weirauch, B.J. Frey, Predicting the sequence speci-
ficities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol.
33 (8) (Jul 2015) 831–838.

[2] F. Arbabzadah, G. Montavon, K.-R. Müller, W. Samek, Identifying individual fa-
cial expressions by deconstructing a neural network, in: Pattern Recognition -
38th German Conference, GCPR 2016, Hannover, Germany, 12–15 September,
2016, Proceedings, 2016, pp. 344–354.

[3] L. Arras, F. Horn, G. Montavon, K.-R. Müller, W. Samek, “What is relevant in a
text document?”: an interpretable machine learning approach, PLoS ONE 12 (8)
(2017) e0181142.

[4] L. Arras, G. Montavon, K. Müller, W. Samek, Explaining recurrent neural net-
work predictions in sentiment analysis, in: Proceedings of the 8th Work-
shop on Computational Approaches to Subjectivity, Sentiment and Social Me-
dia Analysis, WASSA@EMNLP 2017, Copenhagen, Denmark, 8 September, 2017,
2017, pp. 159–168.

[5] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek, On pixel-
wise explanations for non-linear classifier decisions by layer-wise relevance
propagation, PLoS ONE 10 (7) (2015) e0130140.

[6] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, K.-R. Müller,
How to explain individual classification decisions, J. Mach. Learn. Res. 11 (2010)
1803–1831.

[7] D. Balduzzi, M. Frean, L. Leary, J.P. Lewis, K.W.-D. Ma, B. McWilliams, The shat-
tered gradients problem: if resnets are the answer, then what is the question?,
in: D. Precup, Y.W. Teh (Eds.), Proceedings of the 34th International Con-
ference on Machine Learning, in: Proceedings of Machine Learning Research,
vol. 70, PMLR, International Convention Centre, Sydney, Australia, Aug 2017,
pp. 342–350.

[8] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: quantifying
interpretability of deep visual representations, CoRR, arXiv:1704.05796, 2017.

[9] S. Bazen, X. Joutard, The Taylor Decomposition: A Unified Generalization of the
Oaxaca Method to Nonlinear Models, Working papers, HAL, 2013.

[10] Y. Bengio, Practical recommendations for gradient-based training of deep ar-
chitectures, in: Neural Networks: Tricks of the Trade, second edition, 2012,
pp. 437–478.

[11] P. Berkes, L. Wiskott, On the analysis and interpretation of inhomogeneous
quadratic forms as receptive fields, Neural Comput. 18 (8) (2006) 1868–1895.

[12] A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, W. Samek, Layer-wise rel-
evance propagation for neural networks with local renormalization layers, in:
Artificial Neural Networks and Machine Learning – ICANN 2016, 25th Interna-
tional Conference on Artificial Neural Networks, Barcelona, Spain, 6–9 Septem-
ber, 2016, Proceedings, Part II, 2016, pp. 63–71.

[13] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
Inc., New York, NY, USA, 1995.

[14] B. Blankertz, S. Lemm, M.S. Treder, S. Haufe, K.-R. Müller, Single-trial analysis
and classification of ERP components — A tutorial, NeuroImage 56 (2) (2011)
814–825.

[15] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.-R. Müller, Optimizing spa-
tial filters for robust EEG single-trial analysis, IEEE Signal Process. Mag. 25 (1)
(2008) 41–56.

[16] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L.D. Jackel,
U. Muller, Explaining how a deep neural network trained with end-to-end
learning steers a car, CoRR, arXiv:1704.07911, 2017.

[17] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, N. Elhadad, Intelligible models
for healthcare: predicting pneumonia risk and hospital 30-day readmission, in:
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August, 2015, 2015,
pp. 1721–1730.

[18] S. Chmiela, A. Tkatchenko, H.E. Sauceda, I. Poltavsky, K.T. Schütt, K.-R. Müller,
Machine learning of accurate energy-conserving molecular force fields, Sci. Adv.
3 (5) (May 2017) e1603015.

[19] D. Erhan, Y. Bengio, A. Courville, P. Vincent, Visualizing Higher-Layer Features
of a Deep Network, Tech. Rep. 1341, University of Montreal, Jun. 2009, also pre-
sented at the ICML 2009 Workshop on Learning Feature Hierarchies, Montréal,
Canada.

[20] M. Gevrey, I. Dimopoulos, S. Lek, Review and comparison of methods to study
the contribution of variables in artificial neural network models, Ecol. Model.
160 (3) (Feb 2003) 249–264.
[21] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.C.
Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural In-
formation Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Montreal, Quebec, Canada, 8–13 December, 2014,
2014, pp. 2672–2680.

[22] K. Hansen, D. Baehrens, T. Schroeter, M. Rupp, K.-R. Müller, Visual interpre-
tation of kernel-based prediction models, Mol. Inform. 30 (9) (Sep 2011)
817–826.

[23] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. von Lilienfeld, K.-R.
Müller, A. Tkatchenko, Machine learning predictions of molecular properties:
accurate many-body potentials and nonlocality in chemical space, J. Phys.
Chem. Lett. 6 (12) (Jun 2015) 2326–2331.

[24] S. Haufe, F.C. Meinecke, K. Görgen, S. Dähne, J.-D. Haynes, B. Blankertz, F. Bieß-
mann, On the interpretation of weight vectors of linear models in multivariate
neuroimaging, NeuroImage 87 (2014) 96–110.

[25] G.E. Hinton, A practical guide to training restricted Boltzmann machines, in:
Neural Networks: Tricks of the Trade, second edition, 2012, pp. 599–619.

[26] S. Hochreiter, J. Schmidhuber, LSTM can solve hard long time lag problems, in:
Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA,
2–5 December, 1996, 1996, pp. 473–479.

[27] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage
architecture for object recognition?, in: IEEE 12th International Conference on
Computer Vision, ICCV 2009, Kyoto, Japan, 27 September – 4 October, 2009,
2009, pp. 2146–2153.

[28] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.B. Girshick, S. Guadar-
rama, T. Darrell, Caffe: convolutional architecture for fast feature embedding,
in: Proceedings of the ACM International Conference on Multimedia, MM’14,
Orlando, FL, USA, 3–7 November, 2014, 2014, pp. 675–678.

[29] J. Khan, J.S. Wei, M. Ringnér, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold,
M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Classification and diagnos-
tic prediction of cancers using gene expression profiling and artificial neural
networks, Nat. Med. 7 (6) (Jun 2001) 673–679.

[30] P.-J. Kindermans, K.T. Schütt, M. Alber, K.-R. Müller, S. Dähne, PatternNet
and patternLRP – improving the interpretability of neural networks, CoRR,
arXiv:1705.05598, 2017.

[31] G. Klambauer, T. Unterthiner, A. Mayr, S. Hochreiter, Self-normalizing neural
networks, CoRR, arXiv:1706.02515, 2017.

[32] R. Krishnan, G. Sivakumar, P. Bhattacharya, Extracting decision trees from
trained neural networks, Pattern Recognit. 32 (12) (1999) 1999–2009.

[33] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep con-
volutional neural networks, in: Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information, Processing Systems
2012, Proceedings of a meeting held 3–6 December, 2012, Lake Tahoe, Nevada,
United States, 2012, pp. 1106–1114.

[34] W. Landecker, M.D. Thomure, L.M.A. Bettencourt, M. Mitchell, G.T. Kenyon, S.P.
Brumby, Interpreting individual classifications of hierarchical networks, in: IEEE
Symposium on Computational Intelligence and Data Mining, CIDM 2013, Sin-
gapore, 16–19 April, 2013, 2013, pp. 32–38.

[35] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, W. Samek, Analyzing clas-
sifiers: Fisher vectors and deep neural networks, in: 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas NV, USA,
27–30 June, 2016, 2016, pp. 2912–2920.

[36] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, W. Samek, The layer-wise
relevance propagation toolbox for artificial neural networks, J. Mach. Learn. Res.
17 (114) (2016) 1–5.

[37] H. Larochelle, G.E. Hinton, Learning to combine foveal glimpses with a third-
order Boltzmann machine, in: Advances in Neural Information Processing Sys-
tems, vol. 23, 2010, pp. 1243–1251.

[38] H. Lee, R.B. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations, in: Proceed-
ings of the 26th Annual International Conference on Machine Learning, ICML
2009, Montreal, Quebec, Canada, 14–18 June, 2009, 2009, pp. 609–616.

[39] J.T. Leek, R.B. Scharpf, H.C. Bravo, D. Simcha, B. Langmead, W.E. Johnson, D.
Geman, K. Baggerly, R.A. Irizarry, Tackling the widespread and critical impact
of batch effects in high-throughput data, Nat. Rev. Genet. 11 (10) (Sep 2010)
733–739.

[40] S. Lemm, B. Blankertz, T. Dickhaus, K.-R. Müller, Introduction to machine learn-
ing for brain imaging, NeuroImage 56 (2) (2011) 387–399.

[41] B. Letham, C. Rudin, T.H. McCormick, D. Madigan, Interpretable classifiers using
rules and Bayesian analysis: building a better stroke prediction model, Ann.
Appl. Stat. 9 (3) (Sep 2015) 1350–1371.

[42] J. Li, X. Chen, E.H. Hovy, D. Jurafsky, Visualizing and understanding neural
models in NLP, in: NAACL HLT 2016, the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, 12–17 June, 2016, 2016, pp. 681–691.

[43] Z.C. Lipton, The mythos of model interpretability, CoRR, arXiv:1606.03490,
2016.

[44] A. Mahendran, A. Vedaldi, Understanding deep image representations by in-
verting them, in: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, 7–12 June, 2015, 2015, pp. 5188–5196.

http://refhub.elsevier.com/S1051-2004(17)30238-5/bib416C6970616E61686932303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib416C6970616E61686932303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib416C6970616E61686932303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6461676D2F41726261627A616461684D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6461676D2F41726261627A616461684D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6461676D2F41726261627A616461684D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6461676D2F41726261627A616461684D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313831313432s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313831313432s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313831313432s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F77617373612F41727261734D4D533137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F77617373612F41727261734D4D533137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F77617373612F41727261734D4D533137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F77617373612F41727261734D4D533137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F77617373612F41727261734D4D533137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313330313430s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313330313430s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313330313430s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F4261656872656E7353484B484D3130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F4261656872656E7353484B484D3130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F4261656872656E7353484B484D3130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib706D6C722D7637302D62616C64757A7A69313762s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4261755A4B4F543137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4261755A4B4F543137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib42617A656E32303133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib42617A656E32303133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A7365726965732F6C6E63732F42656E67696F3132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A7365726965732F6C6E63732F42656E67696F3132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A7365726965732F6C6E63732F42656E67696F3132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E65636F2F4265726B6573573036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E65636F2F4265726B6573573036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6963616E6E2F42696E6465724D4C4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6963616E6E2F42696E6465724D4C4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6963616E6E2F42696E6465724D4C4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6963616E6E2F42696E6465724D4C4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6963616E6E2F42696E6465724D4C4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib426973686F703A313939353A4E4E503A353235393630s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib426973686F703A313939353A4E4E503A353235393630s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F426C616E6B6572747A4C54484D3131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F426C616E6B6572747A4C54484D3131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F426C616E6B6572747A4C54484D3131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib426C616E6B6572747A32303038s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib426C616E6B6572747A32303038s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib426C616E6B6572747A32303038s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F426F6A6172736B69594343464A4D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F426F6A6172736B69594343464A4D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F426F6A6172736B69594343464A4D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F43617275616E614C474B53453135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F43617275616E614C474B53453135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F43617275616E614C474B53453135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F43617275616E614C474B53453135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F43617275616E614C474B53453135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib43686D69656C6132303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib43686D69656C6132303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib43686D69656C6132303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib457268616E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib457268616E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib457268616E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib457268616E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib47657672657932303033s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib47657672657932303033s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib47657672657932303033s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F476F6F6466656C6C6F77504D58574F43423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F476F6F6466656C6C6F77504D58574F43423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F476F6F6466656C6C6F77504D58574F43423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F476F6F6466656C6C6F77504D58574F43423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F476F6F6466656C6C6F77504D58574F43423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib48616E73656E32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F48617566654D47444842423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F48617566654D47444842423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F48617566654D47444842423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A7365726965732F6C6E63732F48696E746F6E3132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A7365726965732F6C6E63732F48696E746F6E3132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F486F6368726569746572533936s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F486F6368726569746572533936s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F486F6368726569746572533936s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F696363762F4A6172726574744B524C3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F696363762F4A6172726574744B524C3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F696363762F4A6172726574744B524C3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F696363762F4A6172726574744B524C3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6D6D2F4A696153444B4C4747443134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6D6D2F4A696153444B4C4747443134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6D6D2F4A696153444B4C4747443134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6D6D2F4A696153444B4C4747443134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4B68616E32303031s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4B68616E32303031s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4B68616E32303031s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4B68616E32303031s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4B696E6465726D616E7353414D443137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4B696E6465726D616E7353414D443137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4B696E6465726D616E7353414D443137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4B6C616D6261756572554D483137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4B6C616D6261756572554D483137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F70722F4B726973686E616E53423939s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F70722F4B726973686E616E53423939s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4B72697A686576736B7953483132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4B72697A686576736B7953483132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4B72697A686576736B7953483132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4B72697A686576736B7953483132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4B72697A686576736B7953483132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6369646D2F4C616E6465636B657254424D4B423133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6369646D2F4C616E6465636B657254424D4B423133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6369646D2F4C616E6465636B657254424D4B423133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6369646D2F4C616E6465636B657254424D4B423133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4C6170757363686B696E424D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4C6170757363686B696E424D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4C6170757363686B696E424D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4C6170757363686B696E424D4D533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib6C6170757363686B696E2D6A6D6C723136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib6C6170757363686B696E2D6A6D6C723136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib6C6170757363686B696E2D6A6D6C723136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4C61726F6368656C6C65483130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4C61726F6368656C6C65483130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4C61726F6368656C6C65483130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4C656547524E3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4C656547524E3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4C656547524E3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4C656547524E3039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C65656B32303130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C65656B32303130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C65656B32303130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C65656B32303130s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F4C656D6D42444D3131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6E6575726F696D6167652F4C656D6D42444D3131s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C657468616D32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C657468616D32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4C657468616D32303135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6161636C2F4C6943484A3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6161636C2F4C6943484A3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6161636C2F4C6943484A3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6161636C2F4C6943484A3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4C6970746F6E313661s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4C6970746F6E313661s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4D6168656E6472616E563135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4D6168656E6472616E563135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F4D6168656E6472616E563135s1

G. Montavon et al. / Digital Signal Processing 73 (2018) 1–15 15
[45] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed representa-
tions of words and phrases and their compositionality, in: Advances in Neural
Information Processing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013, Proceedings of a meeting held 5–8 December,
2013, Lake Tahoe, Nevada, United States, 2013, pp. 3111–3119.

[46] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K.-R. Müller, Explaining non-
linear classification decisions with deep Taylor decomposition, Pattern Recog-
nit. 65 (2017) 211–222.

[47] G. Montavon, G. Orr, K.-R. Müller, Neural Networks: Tricks of the Trade, 2nd
edition, Springer Publishing Company, Inc., 2012.

[48] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A.
Tkatchenko, Machine learning of molecular electronic properties in chemical
compound space, New J. Phys. 15 (9) (Sep 2013) 095003.

[49] G.F. Montúfar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear regions
of deep neural networks, in: Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information Processing Systems 2014,
Montreal, Quebec, Canada, 8–13 December, 2014, 2014, pp. 2924–2932.

[50] A. Mordvintsev, C. Olah, M. Tyka, Inceptionism: going deeper into neural net-
works, http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-
into-neural.html, Jun. 2015.

[51] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, J. Clune, Synthesizing the pre-
ferred inputs for neurons in neural networks via deep generator networks, in:
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December,
2016, 2016, pp. 3387–3395.

[52] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, J. Clune, Plug & play genera-
tive networks: conditional iterative generation of images in latent space, CoRR,
arXiv:1612.00005, 2016.

[53] A. Nguyen, J. Yosinski, J. Clune, Multifaceted feature visualization: uncovering
the different types of features learned by each neuron in deep neural networks,
CoRR, arXiv:1602.03616, 2016.

[54] B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D.S. Wishart, A. Fyshe, B.
Pearcy, C. Macdonell, J. Anvik, Visual explanation of evidence with additive
classifiers, in: Proceedings, the Twenty-First National Conference on Artifi-
cial Intelligence and the Eighteenth Innovative Applications of Artificial In-
telligence Conference, Boston, Massachusetts, USA, 16–20 July, 2006, 2006,
pp. 1822–1829.

[55] M.T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?”: explaining the
predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August, 2016, 2016, pp. 1135–1144.

[56] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-
propagating errors, Nature 323 (6088) (Oct 1986) 533–536.

[57] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, Evaluating the
visualization of what a deep neural network has learned, IEEE Trans. Neural
Netw. Learn. Syst. 28 (11) (2017) 2660–2673.

[58] K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Müller, A. Tkatchenko, Quantum-
chemical insights from deep tensor neural networks, Nat. Commun. 8 (Jan
2017) 13890.

[59] R.R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, D. Batra, Grad-CAM:
why did you say that? Visual explanations from deep networks via gradient-
based localization, CoRR, arXiv:1610.02391, 2016.

[60] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks:
visualising image classification models and saliency maps, CoRR, arXiv:
1312.6034, 2013.

[61] J.C. Snyder, M. Rupp, K. Hansen, K.-R. Müller, K. Burke, Finding density func-
tionals with machine learning, Phys. Rev. Lett. 108 (25) (Jun 2012).

[62] C. Soneson, S. Gerster, M. Delorenzi, Batch effect confounding leads to strong
bias in performance estimates obtained by cross-validation, PLoS ONE 9 (6)
(2014) e0100335.

[63] J.T. Springenberg, A. Dosovitskiy, T. Brox, M.A. Riedmiller, Striving for simplic-
ity: the all convolutional net, CoRR, arXiv:1412.6806, 2014.

[64] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929–1958.
[65] I. Sturm, S. Lapuschkin, W. Samek, K.-R. Müller, Interpretable deep neural net-
works for single-trial EEG classification, J. Neurosci. Methods 274 (Dec 2016)
141–145.

[66] A. Sung, Ranking importance of input parameters of neural networks, Expert
Syst. Appl. 15 (1998) 405–411.

[67] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich, Going deeper with convolutions, in: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12
June, 2015, 2015, pp. 1–9.

[68] B.J. Taylor, Methods and Procedures for the Verification and Validation of Artifi-
cial Neural Networks, Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 2005.

[69] A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu, Pixel recurrent neural
networks, in: Proceedings of the 33nd International Conference on Machine
Learning, ICML 2016, New York City, NY, USA, 19–24 June, 2016, 2016,
pp. 1747–1756.

[70] L. van der Maaten, A New Benchmark Dataset for Handwritten Character
Recognition, Tech. Rep. TiCC TR 2009-002, Tilburg University, 2009.

[71] M.M.-C. Vidovic, N. Görnitz, K.-R. Müller, M. Kloft, Feature importance measure
for non-linear learning algorithms, CoRR, arXiv:1611.07567, 2016.

[72] M.M.-C. Vidovic, M. Kloft, K.-R. Müller, N. Görnitz, Ml2motif-reliable extraction
of discriminative sequence motifs from learning machines, PLoS ONE 12 (3)
(2017) e0174392.

[73] K. Xu, J. Ba, R. Kiros, K. Cho, A.C. Courville, R. Salakhutdinov, R.S. Zemel,
Y. Bengio, Show, attend and tell: neural image caption generation with visual
attention, in: Proceedings of the 32nd International Conference on Machine
Learning, 2015, pp. 2048–2057.

[74] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks,
in: Computer Vision – ECCV 2014 – 13th European Conference, Zurich, Switzer-
land, 6–12 September, 2014, Proceedings, Part I, 2014, pp. 818–833.

[75] J. Zhang, Z.L. Lin, J. Brandt, X. Shen, S. Sclaroff, Top-down neural attention by
excitation backprop, in: Computer Vision – ECCV 2016 – 14th European Con-
ference, Amsterdam, The Netherlands, 11–14 October, 2016, Proceedings, Part
IV, 2016, pp. 543–559.

[76] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, A. Torralba, Learning deep features for
discriminative localization, in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas NV, USA, 27–30 June, 2016, 2016,
pp. 2921–2929.

[77] J.M. Zurada, A. Malinowski, I. Cloete, Sensitivity analysis for minimization of
input data dimension for feedforward neural network, in: 1994 IEEE Interna-
tional Symposium on Circuits and Systems, ISCAS 1994, London, England, UK,
30 May – 2 June, 1994, 1994, pp. 447–450.

Grégoire Montavon received a Masters degree in Communication Sys-
tems from École Polytechnique Fédérale de Lausanne, in 2009 and a Ph.D.
degree in Machine Learning from the Technische Universität Berlin, in
2013. He is currently a Research Associate in the Machine Learning Group
at TU Berlin.

Wojciech Samek received a Diploma degree in Computer Science from
Humboldt University Berlin in 2010 and the Ph.D. degree in Machine
Learning from Technische Universität Berlin, in 2014. Currently, he directs
the Machine Learning Group at Fraunhofer Heinrich Hertz Institute. His
research interests include neural networks and signal processing.

Klaus-Robert Müller (Ph.D. 92) has been a Professor of computer sci-
ence at TU Berlin since 2006; co-director Berlin Big Data Center. He won
the 1999 Olympus Prize of German Pattern Recognition Society, the 2006
SEL Alcatel Communication Award, and the 2014 Science Prize of Berlin.
Since 2012, he is an elected member of the German National Academy of
Sciences – Leopoldina.

http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D696B6F6C6F76534343443133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D696B6F6C6F76534343443133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D696B6F6C6F76534343443133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D696B6F6C6F76534343443133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D696B6F6C6F76534343443133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F70722F4D6F6E7461766F6E4C42534D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F70722F4D6F6E7461766F6E4C42534D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F70722F4D6F6E7461766F6E4C42534D3137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D6F6E7461766F6E3A323031323A4E4E543A32343830393831s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D6F6E7461766F6E3A323031323A4E4E543A32343830393831s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D6F6E7461766F6E32303133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D6F6E7461766F6E32303133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D6F6E7461766F6E32303133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D6F6E74756661725043423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D6F6E74756661725043423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D6F6E74756661725043423134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4D6F6E74756661725043423134s1
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://googleresearch.blogspot.com/2015/06/inceptionism-going-deeper-into-neural.html
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4E677579656E445942433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4E677579656E445942433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4E677579656E445942433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4E677579656E445942433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6E6970732F4E677579656E445942433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E594244433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E594244433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E594244433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E59433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E59433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F4E677579656E59433136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F616161692F506F756C696E45534C475746504D413036s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F5269626569726F30473136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F5269626569726F30473136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F5269626569726F30473136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F6B64642F5269626569726F30473136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib52756D656C6861727431393836s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib52756D656C6861727431393836s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53616D656B32303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53616D656B32303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53616D656B32303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53636875747432303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53636875747432303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53636875747432303137s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53656C766172616A7544564350423136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53656C766172616A7544564350423136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53656C766172616A7544564350423136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53696D6F6E79616E565A3133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53696D6F6E79616E565A3133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F53696D6F6E79616E565A3133s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib536E7964657232303132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib536E7964657232303132s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313030333335s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313030333335s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313030333335s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F537072696E67656E626572674442523134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F537072696E67656E626572674442523134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F53726976617374617661484B53533134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F53726976617374617661484B53533134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F6A6D6C722F53726976617374617661484B53533134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib537475726D32303136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib537475726D32303136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib537475726D32303136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53756E673938s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib53756E673938s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F537A65676564794C4A5352414556523135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F537A65676564794C4A5352414556523135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F537A65676564794C4A5352414556523135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F537A65676564794C4A5352414556523135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib5461796C6F723A323030353A4D50563A31303736363533s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib5461796C6F723A323030353A4D50563A31303736363533s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4F6F72644B4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4F6F72644B4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4F6F72644B4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F4F6F72644B4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D616174656E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib4D616174656E32303039s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F5669646F766963474D4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A6A6F75726E616C732F636F72722F5669646F766963474D4B3136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313734333932s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313734333932s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib31302E313337312F6A6F75726E616C2E706F6E652E30313734333932s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F5875424B4343535A423135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F5875424B4343535A423135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F5875424B4343535A423135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69636D6C2F5875424B4343535A423135s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A65696C6572463134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A65696C6572463134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A65696C6572463134s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A68616E674C4253533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A68616E674C4253533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A68616E674C4253533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F656363762F5A68616E674C4253533136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F5A686F754B4C4F543136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F5A686F754B4C4F543136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F5A686F754B4C4F543136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F637670722F5A686F754B4C4F543136s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69736361732F5A75726164614D433934s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69736361732F5A75726164614D433934s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69736361732F5A75726164614D433934s1
http://refhub.elsevier.com/S1051-2004(17)30238-5/bib44424C503A636F6E662F69736361732F5A75726164614D433934s1

	Methods for interpreting and understanding deep neural networks
	1 Introduction
	2 Preliminaries
	3 Interpreting a DNN model
	3.1 Activation maximization (AM)
	3.2 Improving AM with an expert
	3.3 Performing AM in code space
	3.4 From global to local analysis

	4 Explaining DNN decisions
	4.1 Sensitivity analysis
	4.2 Simple Taylor decomposition
	4.3 Backward propagation techniques

	5 Layer-wise relevance propagation (LRP)
	5.1 LRP propagation rules
	5.2 LRP and deep Taylor decomposition
	5.3 Handling special layers

	6 Recommendations and tricks
	6.1 Structuring the DNN for maximum explainability
	6.2 Choosing the LRP rules for explanation
	6.3 Tricks for implementing LRP
	6.4 Translation trick for denoising heatmaps
	6.5 Sliding window explanations for large images

	7 Evaluating explanation quality
	7.1 Transfer with a simple task
	7.2 Explanation continuity
	7.3 Explanation selectivity

	8 Applications
	8.1 Model validation
	8.2 Analysis of scientiﬁc data

	9 Conclusion
	Acknowledgments
	References

